Close
Close

Login here to access/preview our exam papers, or sign up now for your free membership!



2009
Thu
22
Oct
Miss Loi avatar

The Perils Of Plucking Eyebrows At An Unfamiliar Place

(5)
Tuition given in the topic of E-Maths Tuition Questions from the desk of Miss Loi at 11:30 pm (Singapore time)

It’s four more days to the O-Level maths papers, and the joss sticks sessions, phone calls, and the churning of customized notes, worksheets and 小李飞刀 questions continue unabated.

All these wholesome activities have, unfortunately, combined to take an unwholesome toll on Miss Loi’s well-being, as evident from the occasional misaligned fake eyelashes eyelash extensions and the sometimes uneven patches of foundation on her face.

What cannot be forgiven though, was that pair of bushy, Susan Boyle-lookalike eyebrows she chanced upon in the washroom mirror this evening, which meant that she couldn’t wait for her last joss sticks session to end so that she could visit her beautician to restore those eyebrows to their Cindy Crawford glory again.

Unfortunately, her regular beautician had long closed for the night and she was left scouring a nearby mall for a professional who could perform this emergency corrective procedure.

Imagine her joy when she found a shop that was still open, where she gleefully ran inside to be its last customer of the day (and consequently delaying its closing time by another 10 mins).

Browsing through the glowing catalogue of eyebrow celebs that included Angelina Jolie, Ayumi Hamasaki, Sonija Kwok, and countless other unknown models, Miss Loi decided that she wanted to be Athena Chu and proceeded to lean back, close her eyes and handed over her pair of eyebrows to the ‘eyebrow stylist’ for that value-for-money $10 Athena job.

And so the stylist proceeded to pluckpluckpluck … in earnest. So rhythmic and therapeutic was her pluckpluckplucking … that Miss Loi began to slowly fall asleep, but not before seeing a familiar figure floating out of the corner of her eye … and then …

BOOMZ!!!

Sorry Miss! Something hit me on the head and my contact lenses fell off! Now I can’t see!

Huh? Is there anyone who can take over?

Sorry Miss! The shop is closing and I’m the only one left. You need to guide me to finish up the job!

Miss Loi then realized, to her dismay, that there were no mirrors in the shop …

With her intimate self-knowledge, however, Miss Loi knows that her eyebrow is represented by the curve y = −x2 + 3x + 5, beginning where it cuts the y-axis at y = a and has its arch at x = b where the maximum value of y is c.

As the eyebrow stylist had never studied nor understood calculus before, help her determine the coordinates of the arch and the starting point of Miss Loi’s eyebrow via factorising y = −x2 + 3x + 5 using the completing the square method to find the values of a, b and c.

The stylist had this to add

If you can’t guide me then I’ll have to call for the only eyebrow plucker who’s available at this hour!

Steven Lim
頑張って!!!

Revision Exercise

To show that you have understood what Miss Loi just taught you from the centre, you must:

  1. Leave A Comment!
Comments & Reactions

3 Comments

  1. Ron's Avatar
    Ron commented in tuition class


    2009
    Oct
    23
    Fri
    12:58am
     
    1

    y = −x2 + 3x + 5 = - (x2 - 3x) + 5 = - (x2 - 2(1.5)x + (1.5)2) + 5 + (1.5)2 = - (x - 1.5)2 + 7.25

    Is this enough to tide you over miss loi?
    cuts y-axis at y = 5, arch at x = 1.5, max value of y is at y=7.25.

  2. Nash's Avatar
    Nash commented in tuition class


    2009
    Oct
    23
    Fri
    4:05pm
     
    2

    wah u stayed up til 12:58 to be the first to solve =X proness..
    But u misread the most important bit, it should be a=5 ,b=1.5 ,c= 7.25. Must ans to the question...teachers minus marks for not answering to the point.(recalls blood soaked test paper)

  3. Miss Loi's Avatar
    Miss Loi Friend Miss Loi on Facebook @MissLoi commented in tuition class


    2009
    Oct
    24
    Sat
    11:08pm
     
    3

    There are two main instances in the new Emaths syllabus where students would need to invoke the mouthful that's the completing the square method i.e. when

    1. you're specifically asked to use it solve a quadratic equation ax2+bx+ac=0
    2. you need to express a quadratic function y=ax2+bx+ac into a graph of the form: y = ±(xp)2+q

    Though the two cases look similar to the untrained eye, the perennial sin of treating the equation ax2+bx+ac=0 and the function y=ax2+bx+ac as the same thing has brought many students to grief (and blood-soaked test papers), especially after they anyhow bring terms left and right of the = sign when dealing with a function.

    Obviously we're dealing with the second instant here as we need to find a, b and c in order to save Miss Loi's eyebrow, and we'll now attempt to dissect Ron's late night solution in a series of robust steps:

    1. Step 1: Bring out coefficient of x2 and put the x and x2 terms inside brackets:

      y = −(x2 3x) + 5

      The coefficient of x2 is −1, so bringing it out will change the + 3x to − 3x inside the bracket (DUH! - yes simple algebra but then ...)

    2. Step 2: + (half of x-coefficient)2 − (x-coefficient)2 within the brackets

      y = −(x2 − 3x + (3/2)2 − (3/2)2) + 5

    3. Step 3: Move the new minus(−) term carefully out of the brackets, and be mindful of the need to multiply it with an constant outside the brackets.

      y = −(x2 − 3x + (3/2)2) + (3/2)2 + 5

      Note that the −(3/2)2 has become a + (3/2)2 because of the − sign outside the brackets.

      Tread carefully here, for this is careless mistake territory.

    4. Step 4: Transform everything inside the brackets into a square term. Whatever constant that's outside the brackets, STAYS outside the brackets.

      y = −(x − (3/2))2 + (3/2)2 + 5

      Note that its (x − (3/2))2 NOT (x + (3/2))2 because of the negative 3x within the brackets.

      You're deep, deep into careless mistakes territory now ...

    5. Step 5: Sum up the constant terms outside the brackets to obtain the final expression y = ±(xp)2+q, where (p, q) are the coordinates of the:

      • Min. point if (xp)2+q (Recall the happy ∪ quadratic curve)
      • Max. point if −(xp)2+q (Recall the sad ∩ quadratic curve )

      y = −(x − (3/2))2 + 7.25

    Graph for completing the square

    Miss Loi's eyebrow - fierce isn't it?

    And so from our final expression above, the maximum (since there's a -ve sign outside the brackets) point of the graph is (3/2, 7.25)
    c = 7.25
    b = 3/2 = 1.5
    To find the y-intercept a, simply equate x to 0 to get a=5.

    N.B. Performing the 5 steps above is completely safe whether you're completing the square for a function or an equation, as there's no moving of terms left and right of the = sign.

2 Reactions

  1. Tweetback
    Miss Loi tweeted


    2009
    Oct
    22
    Thu
    3:38pm
     
    4

    The perils of plucking eyebrows at an unfamiliar place: http://bit.ly/3ukhWG



  2. 2009
    Oct
    26
    Mon
    5:32pm
     
    5

    [...] Miss Loi babbled "There are two main instances in the new Emaths syllabus where..." [...]

Post a Comment

  • * Required field
  • Your email will never, ever be published nor shared with a Nigerian banker or a pharmaceutical company.
  • Spam filter in operation.
    DO NOT re-submit if your comment doesn't appear.
  • Spammers often suffer terrible fates.
*
*

Impress Miss Loi with beautiful mathematical equations in your comment by enclosing them within alluring \LaTeX [tex][/tex] tags (syntax guide | online editor), or the older [pmath][/pmath] tags (syntax guide). Please PREVIEW your equations before posting!

CommentLuv badge
 

 

Whatsapp Instagram Twitter Facebook Close Search Login Access RSS Joss Sticks Sessions Suggested Solutions Preview O Level Additional Mathematics O Level Elementary Mathematics Secondary Three Additional Mathematics Secondary Three Elementary Mathematics Secondary Two Mathematics Secondary One Mathematics Additional Mathematics 4038 Additional Mathematics 4018 Elementary Mathematics 4017 Virus