ELEMENTARY MATHEMATICS

4016／02
Paper 2 Suggested Solutions
October／November 2011
1．Topic：Algebra（Formulae，Algebraic Manipulation）
（a）

$$
\begin{aligned}
\frac{2 x+7}{3} & =\frac{3-x}{5} \\
5(2 x+7) & =3(3-x) \\
10 x+35 & =9-3 x \\
10 x+3 x & =9-35 \\
13 x & =-26 \\
x & =-2
\end{aligned}
$$

（b）

$$
x y=2(x+3)
$$

$$
x y=2 x+6
$$

$$
x y-2 x=6
$$

$$
x(y-2)=6
$$

Group all variables containing x ．

$$
x=\frac{6}{y-2}
$$

（c）$\frac{4}{x-2}+\frac{2}{2 x+1}=\frac{4(2 x+1)+2(x-2)}{(x-2)(2 x+1)}$

$$
=\frac{8 x+4+2 x-4}{(x-2)(2 x+1)}
$$

$$
=\frac{10 x}{(x-2)(2 x+1)}
$$

$$
\begin{align*}
\frac{4 x^{2}-y^{2}}{2 x^{2}+x y} & =\frac{(2 x+y)(2 x-y)}{2 x^{2}+x y} \tag{d}\\
& =\frac{(2 x+y)(2 x-y)}{x(2 x+y)} \\
& =\frac{2 x-y}{x}
\end{align*}
$$

2．Topic：Arithmetic（Application of Mathematics in Practical Situations \＆ Compound Interest）
（a）（i）

$$
\begin{aligned}
250 \mathrm{~km} & \rightarrow 15.75 \text { litres } \\
1 \mathrm{~km} & \rightarrow \frac{15.75}{250}=0.063 \text { litres } \\
100 \mathrm{~km} & \rightarrow 0.063 \times 100=6.3 \text { litres }
\end{aligned}
$$

Fuel consumption of the car is 6.3 litres per 100 km ．
（ii）（a）

$$
\begin{align*}
& 8.2 \text { litres } \rightarrow 100 \mathrm{~km} \\
& 1 \text { litre } \rightarrow \frac{100}{8.2}=12.195 \mathrm{~km} \\
& 60 \text { litres } \rightarrow 12.195 \times 60=731.7 \\
& \approx 732 \mathrm{~km} \text { (} \mathbf{3} \mathbf{~ s i g . ~ f i g .) ~} \\
& 100 \mathrm{~km} \rightarrow 8.2 \text { litres } \tag{b}\\
& 1 \mathrm{~km} \rightarrow \frac{8.2}{100}=0.082 \text { litres } \\
& 120 \mathrm{~km} \rightarrow 0.082 \times 120=9.84 \text { litres } \\
& \text { Cost of petrol }=9.84 \times \$ 1.65 \\
& =\$ 16.236 \\
& \approx \$ 16.24 \text { (nearest cent) } \\
& 5 \text { units } \rightarrow \$ 1000 \\
& 1 \text { unit } \rightarrow \frac{1000}{5}=\$ 200 \\
& 12 \text { units } \rightarrow 200 \times 12 \\
& =\$ 2400 \\
& \text { (ii) Total amount of money }=P\left(1+\frac{r}{100}\right)^{n} \\
& =\$ 1000\left(1+\frac{3.5}{100}\right)^{5} \\
& =\$ 1187.6863 \\
& \approx \$ 1187.69 \text { (nearest cents) }
\end{align*}
$$

（b）（i）
3. Topic: Angle Properties of Polygon \& Geometry
(Geometrical Properties of Circles)
(a)

$$
\operatorname{Ext} \Varangle=180^{\circ}-162^{\circ}
$$

Sum of exterior angles of polygon is $360^{\circ} \Rightarrow$ Number of sides $=\frac{360^{\circ}}{\text { ext. } 4}$
Number of sides $=\frac{360}{18}$
$=20$
(b) (i) (a) $O \hat{A} P=90^{\circ} \quad(O A \perp A P)$
$A \hat{O} P=180^{\circ}-O \hat{A} P-A \hat{P} O$
$=180^{\circ}-90^{\circ}-36^{\circ}($ Sum of \Varangle in $\Delta)$
$=54^{\circ}$
(b) $C \hat{O} B=A \widehat{O} P=54^{\circ}$
$O \hat{B} C=\frac{180^{\circ}-C \hat{O} B}{2}$ (isos. $\Delta, O C=O B$)
$=\frac{180^{\circ}-54^{\circ}}{2}$
$=63^{\circ}$
(c) $\angle A C B=\frac{\text { reflex } A \hat{O} B}{2}$

$$
\begin{aligned}
& =\frac{360^{\circ}-54(2)}{2}(\angle \text { at centre }= \\
& \quad 2 \angle \text { at circumference })
\end{aligned}
$$

$=126^{\circ}$
(ii)

$$
\tan 36^{\circ}=\frac{6}{A P}
$$

$$
A P=8.25829
$$

Area of quad $A O B P=2 \times \frac{1}{2} \times A P \times A O$

$$
=8.25829 \times 6
$$

$=49.459$
$\approx 49.5 \mathrm{~cm}^{2}$ (3 sig.fig.)
4. Topic: Solutions to Quadratic Equations
(a) Length of the block $=x \mathrm{~cm}$

Height of the block $=(x+1) \mathrm{cm}$
Width of the block $=(x-3) \mathrm{cm}$
n

Total Surface area $=$ 2(length \times width $)+2($ width \times height) +2 (length \times height)

$$
\text { Total surface area }=2 x(x-3)+2(x-3)(x+1)+2 x(x+1)
$$

(b)

$$
\begin{array}{rlr}
& =2 x^{2}-6 x+2\left(x^{2}-2 x-3\right)+2 x^{2}+2 x \\
& =2 x^{2}-6 x+2 x^{2}-4 x-6+2 x^{2}+2 x \\
& =6 x^{2}-\mathbf{8 x}-\mathbf{6} \mathbf{c m}^{2} & \\
6 x^{2}-8 x-6 & =500 & \text { General quadratic formula } \\
6 x^{2}-8 x-506 & =0 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$$
3 x^{2}-4 x-253=0(\text { shown })
$$

(c)

$$
3 x^{2}-4 x-253=0
$$

$$
\begin{array}{rlrl}
x & =\frac{4 \pm \sqrt{4^{2}-4(3)(-253)}}{2(3)} & \begin{array}{l}
\text { Question simply asks to solve } \\
\text { the equation. Do NOT reject the } \\
\text { negative value of } x \text { here! }
\end{array} \\
& =\frac{4 \pm \sqrt{3052}}{6} & & \\
& =9.874 & \text { or } & -8.5408 \\
& \approx 9.87 & \text { or } & -\mathbf{8 . 5 4}(\mathbf{2} \mathbf{~ d . p .)}
\end{array}
$$

(d) Height of the block $=x+1$

$$
\begin{aligned}
& =9.874+1 \\
& =10.874 \\
& =\mathbf{1 0 . 9} \mathbf{~ c m ~ (\mathbf { 3 }} \text { sig.fig.) }
\end{aligned}
$$

5. Topic: Number Patterns \& Algebra
(a) (i) $\mathrm{T}_{\mathrm{n}}=\frac{n(n+1)}{4}$

$$
\begin{aligned}
\mathrm{T}_{20} & =\frac{20(21)}{4} \\
& =\mathbf{1 0 5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 33=\frac{n(n+1)}{4} \\
& 132=n^{2}+n \\
& n^{2}+n-132=0 \\
& (n+12)(n-11)=0 \\
& n+12=0 \quad \text { or } n-11=0 \\
& n=-12(\mathrm{rej}) \text { or } \quad n=11
\end{aligned}
$$

\therefore The term is \mathbf{T}_{11}.
(b) (i) $\frac{2 p+1}{2}=p+\frac{1}{2}$
$(2 p+1)$ is not divisible by 2 since p is an integer.
$\therefore 2 p+1$ is an odd number.
(ii) Next odd number $=(2 p+1)+2$

$$
=2 p+3
$$

(iii) $(2 p+1)^{2}=4 p^{2}+4 p+1$

$$
(2 p+3)^{2}=4 p^{2}+12 p+9
$$

(iv) $(2 p+3)^{2}-(2 p+1)^{2}$
$=4 p^{2}+12 p+9-\left(4 p^{2}+4 p+1\right)$
$=8 p+8$
$=8(p+1)$
Since p is an integer, $8(p+1)$ is always a multiple of 8 .
6. Topic: Trigonometry (Cosine Rule, Sine Rule, Bearings, Area of triangle, Angle of Elevation)
(a) (i) $L B^{2}=250^{2}+400^{2}-2(250)(400) \cos 65^{\circ}$

$$
\begin{aligned}
L B & =371.45 \\
& \approx \mathbf{3 7 1} \mathbf{~ m}
\end{aligned}
$$

Cosine rule (given in formula sheet):
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
(ii) Area of $\triangle L A B=\frac{1}{2}(250)(400) \sin 65^{\circ}$

$$
\begin{aligned}
& =45315.38 \\
& \approx \mathbf{4 5 3 0 0} \mathbf{~ m}^{\mathbf{2}} \text { (} \mathbf{3} \text { sig. fig.) }
\end{aligned}
$$

(iii) $\frac{L A}{\sin L \widehat{B A} A}=\frac{L B}{\sin L \widehat{B A} A}$

$$
\frac{250}{\sin L \widehat{B A} A}=\frac{371.45}{\sin 65^{\circ}}
$$

$$
\sin L \hat{B} A=0.60997
$$

Sine rule (given in formula sheet): $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

$$
L \widehat{B} A=37.588
$$

$$
\approx 37.6^{\circ}(1 \mathrm{~d} . \mathrm{p})
$$

Elementary Mathematics (4016/02)

(iv)

Since B is due west of A, i.e. $L \widehat{M} B=90^{\circ}$

$$
\angle x=180^{\circ}-90^{\circ}-L \hat{B} A
$$

$=180^{\circ}-90^{\circ}-37.588^{\circ}$
$=52.412^{\circ}$
\therefore Bearing of B from $L=180^{\circ}+x^{\circ}$
$=180^{\circ}+52.412$
$\approx 232.4^{\circ}$ (1 d. p.)

Rounded off to one decimal place since bearing is in degrees.
(b) Let $T L$ be the height of the lighthouse.

$$
\begin{aligned}
\tan 7^{\circ} & =\frac{T L}{250} \\
T L & =30.696 \mathrm{~m}
\end{aligned}
$$

Let θ be the angle of elevation of the top of the lighthouse from B.

$$
\begin{aligned}
\tan \theta & =\frac{30.696}{371.45} \\
\theta & =4.724^{\circ} \\
& =4.7^{\circ}(\mathbf{1} \mathbf{~ d .} \mathbf{p .})
\end{aligned}
$$

7. Topic: Variation
(a) Let V be the quantity of paint and x be the depth of the container.

$$
V=k x^{2}
$$

When $x=50, V=150$,

$$
\begin{aligned}
150 & =k(50)^{2} \\
k & =0.06 \\
V & =0.06 x^{2}
\end{aligned}
$$

(i) When $x=70 \mathrm{~cm}, V=0.06(70)^{2}$

$$
=294 \mathrm{ml}
$$

(ii) When $V=54 \mathrm{ml}, 54=0.06(x)^{2}$

$$
\begin{aligned}
x^{2} & =900 \\
\boldsymbol{x} & =\mathbf{3 0} \mathbf{c m} \text { or } \quad-30(\mathrm{rej})
\end{aligned}
$$

Elementary Mathematics（4016／02）

（b）

i）$y^{2}=80^{2}+24^{2}$

$x=\sqrt{15696}-\sqrt{6976}$
$=41.76$
$\approx 41.8 \mathrm{~m}$（3 sig．fig．）（shown）

（iii）$\quad \frac{\text { Volume of the smaller pot }}{\text { Volume of the larger pot }}=\left(\frac{\text { Height of smaller pot }}{\text { Height of larger pot }}\right)^{3}$
Volume of similar figures $\frac{V_{1}}{V_{2}}=\left(\frac{h_{1}}{h_{2}}\right)^{3}$

$$
\begin{aligned}
\frac{1}{2} & =\left(\frac{40}{\text { Height of larger pot }}\right)^{3} \\
\sqrt[3]{\frac{1}{2}} & =\frac{40}{\text { Height of larger pot }}
\end{aligned}
$$

Height of larger pot $=\frac{40}{\sqrt[3]{\frac{1}{2}}}$

$$
\begin{aligned}
& =50.396 \\
& \approx \mathbf{5 0 . 4} \mathbf{~ c m} \text { (3 sig.fig.) }
\end{aligned}
$$

8．Topic：Vectors in Two Dimensions
（a）（i） $\overrightarrow{O P}=\binom{3}{4} \overrightarrow{O Q}=\binom{-1}{2}$
$\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}$
$=\binom{-3}{-4}+\binom{-1}{2}$
$=\binom{-4}{-2}$
Triangle Law of

（ii）$|\overrightarrow{P Q}|=\sqrt{(-4)^{2}+(-2)^{2}}$

$$
\begin{aligned}
& =4.472 \\
& \approx 4.47 \text { units (} 3 \text { sig.fig.) }
\end{aligned}
$$

Magnitude of $\binom{u}{v}$ ：

$$
\left|\binom{u}{v}\right|=\sqrt{u^{2}+v^{2}}
$$

（iii）

$$
\begin{aligned}
\overrightarrow{P L} & =\frac{1}{2} \overrightarrow{P Q} \\
& =\frac{1}{2}\binom{-4}{-2} \\
& =\binom{\mathbf{- 2}}{-\mathbf{1}}
\end{aligned}
$$

Elementary Mathematics（4016／02）

（b）（i）（a） $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}$
$=-\mathbf{a}+\mathbf{b}$
（b） $\overrightarrow{O X}=\overrightarrow{O A}+\overrightarrow{A X}$
$\overrightarrow{A B}=2 \overrightarrow{A X}$
$=\mathbf{a}+\frac{1}{2} \overrightarrow{A B}$
$=\mathbf{a}+\frac{1}{2}(-\mathbf{a}+\mathbf{b})$
$=\mathbf{a}-\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
$=\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
（c） $\overrightarrow{C D}=\overrightarrow{C O}+\overrightarrow{O D}$
$=-\frac{3}{2} \mathbf{b}+3 \mathbf{a}$

$$
\begin{aligned}
& \overrightarrow{O B}=2 \overrightarrow{B C} \Rightarrow \overrightarrow{O C}=\frac{1}{2} \overrightarrow{B O}+\overrightarrow{B O} \\
& \overrightarrow{A D}=2 \overrightarrow{O A} \Rightarrow \overrightarrow{O D}=\overrightarrow{O A}+2 \overrightarrow{O A}
\end{aligned}
$$

$=3 \mathbf{a}-\frac{3}{2} \mathbf{b}$
（ii）

$$
\begin{aligned}
\overrightarrow{O Y} & =\overrightarrow{O C}+\overrightarrow{C Y} \\
& =\frac{3}{2} \mathbf{b}+\frac{1}{3} \overrightarrow{C D} \\
& =\frac{3}{2} \mathbf{b}+\frac{1}{3}\left[-\frac{3}{2} \mathbf{b}+3 \mathbf{a}\right] \\
& =\frac{3}{2} \mathbf{b}-\frac{1}{2} \mathbf{b}+\mathbf{a} \\
& =\mathbf{a}+\mathbf{b}
\end{aligned}
$$

$$
C Y: Y D=1: 2
$$

（iii） $\overrightarrow{O X}=\frac{1}{2}(\mathbf{a}+\mathbf{b})$

$$
\Rightarrow O, X, Y \text { are collinear }
$$

$$
=\frac{1}{2} \overrightarrow{O Y}
$$ （straight line）

$\Rightarrow O, X$ and Y are collinear $\Rightarrow X$ is the midpoint of line $O Y$ ．

9．Topic：Graphical Solution of Equations
（a）$y=\frac{1}{5} x^{2}(x-4)$
When $x=-2, y=\frac{1}{5}(-2)^{2}(-2-4)$

$$
=-4.8
$$

（b）

Elementary Mathematics (4016/02)

(c) (i) $\frac{1}{5} x^{2}(x-4)=-1$

$$
y=-1
$$

(d) Gradient $=\frac{6.3-(-3.3)}{6-3}$ AMaths students:

$$
\therefore x=-1,1.4 \text { or } 3.6
$$

$$
\text { Check: } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{5}\left[2 x(x-4)+x^{2}\right]
$$

$$
\operatorname{Sub} x=4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3.2
$$

10. Topics: Statistics, Simple Probability
(a) (i) Total number of students $=100$
$\%$ of students who received less than 20 emails in a week
$=\frac{21}{100} \times 100 \% \quad$ no. of students who received less than 20 emails in a week
$=\mathbf{2 1 \%} \quad$ total no. of students
(ii) (a) Mean number of emails received in a week
$=\frac{\sum f x}{\sum f}$
$=\frac{8(5)+13(15)+25(25)+30(35)+18(45)+6(55)}{100}$
$=30.5$
(b) Standard deviation
$=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-\left(\frac{\sum f x}{\Sigma f}\right)^{2}}$
$=\sqrt{\frac{8(5)+13(15)+25(25)+30(35)+18(45)+6(55)}{100}-(30.5)^{2}}$
$=13.067$
≈ 13.1 (3 sig. fig.)

Elementary Mathematics (4016/02)

(b) (i)

(ii) (a) P (two blue sweets are taken) $=0$
(b) P (both sweets are of the same colour)
$=\frac{5}{10}\left(\frac{4}{9}\right)+\frac{4}{10}\left(\frac{3}{9}\right)$
$P(R R)+P(G G)+P(B B)$
$=\frac{16}{45}$
(c) P (one of the sweets taken is blue)
$=1-\mathrm{P}$ (none of the sweets taken is blue)
$=1-\frac{9}{10}\left(\frac{8}{9}\right)$

$$
\mathrm{P} \text { (none of the sweets taken is blue) }
$$

$=\frac{1}{5}$
$=P\left(1^{\text {st }}\right.$ sweet not blue $) \cap \mathrm{P}\left(2^{\text {nd }}\right.$ sweet not blue $)$ $=\frac{9}{10}\left(\frac{8}{9}\right)$

