Elementary Mathematics (4016/01)

ELEMENTARY MATHEMATICS

Paper 1 Suggested Solutions
October/November 201

1. Topic: Arithmetic (Approximation \& Estimation)

$$
\frac{4.51}{19.6-3.91^{2}} \approx \mathbf{1 . 0 5}(\mathbf{3} \text { sig. fig.) }
$$

Answer \qquad [2]
2. Topic: Integers
(a) $32-(-7)=\mathbf{3 9}$
(b) $\frac{-3+25-7}{3}=5$

Answer (a)	39	${ }^{\circ} \mathrm{C}[1]$
(b)	5	

(b) \qquad ${ }^{\circ} \mathrm{C}$ [1]
3. Topic: Arithmetic (Percentage)

$$
\begin{array}{rlrl}
120-105=15^{\circ} & \rightarrow 25 & & \angle \text { of sector in pie chart } \\
& \propto \text { its given data }
\end{array}
$$

Answer \qquad [2]
4. Topic: Matrices
(a) $\left(\begin{array}{ccc}59 & 15 & 101 \\ 102 & 3 & 72\end{array}\right)\left(\begin{array}{c}10 \\ 7 \\ 5\end{array}\right)=\binom{\mathbf{1 2 0 0}}{\mathbf{1 4 0 1}}$

Answer
(a) $\quad\binom{1200}{1401}$
(b) The total amount of money collected for each match, i.e. $\$ 1200$ for the first match and $\$ 1401$ for the second match
5. Topic: Algebra

$$
\begin{align*}
x \notin & \rightarrow 1 \text { litre } \\
1 \notin & \rightarrow \frac{1}{x} \text { litre } \\
100 \not \subset & \rightarrow \frac{100}{x} \text { litre } \\
\$ y & \rightarrow \frac{\mathbf{1 0 0 y}}{x} \text { litre } \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } \quad \frac{100 y}{x} \text { litres } \tag{2}
\end{equation*}
$$

6. Topic: Arithmetic (Fractions \& Percentages)
(a)

$$
12 \div \frac{2}{3}=\mathbf{1 8}
$$

(b) $\frac{3 \mathrm{~cm}}{6 \times 100 \mathrm{~cm}} \times 100 \%=\mathbf{0 . 5} \%$

$$
\begin{equation*}
1 \mathrm{~m}=100 \mathrm{~cm} \tag{1}
\end{equation*}
$$

[1]
$\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
$=\binom{a x+b y+c z}{d x+e y+f z}$

\qquad
\qquad

Difference between angles of "Mathematics" and "Chemistry" sectors in pie chart.

Elementary Mathematics (4016/01)

7. Topic: Factors and Multiples

(a) $\sqrt[3]{p}=\sqrt[3]{2^{3} \times 3^{6}}$

$$
\begin{aligned}
& =2 \times 3^{2} \quad \sqrt[n]{a^{m}}=a^{\frac{m}{n}} \\
& =\mathbf{1 8}
\end{aligned}
$$

(b) LCM $=2^{3} \times 3^{6} \times 5 \times 7$
(c) $\mathrm{HCF}=2 \times 3$
$=6$
\qquad $[1]$
$[1]$

8. Topic: Algebra
(a) $\frac{5 c}{2} \div \frac{20 c^{2}}{d}=\frac{5 c}{2} \times \frac{d}{20 c^{2}}$
$=\frac{d}{8 c}$
(b) $6 x^{2}+14 x-12=2\left(3 x^{2}+7 x-6\right)$

$$
=2(3 x-2)(x+3)
$$

Answer

9. Topic: Maps and Scales
(a)

$$
\begin{aligned}
1 \mathrm{~cm} & : 25000 \mathrm{~cm} \\
1 \mathrm{~cm} & : 0.25 \mathrm{~km} \\
1 \mathrm{~cm} & : 0.25 \mathrm{~km}
\end{aligned}
$$

$1 \mathrm{~km}=1000 \mathrm{~m}$ $1000 \times 100 \mathrm{~cm}$
(b)

$$
30 \mathrm{~cm}: 30 \times 0.25
$$

$$
=7.5 \mathrm{~km}
$$

(c) From (a), $(1 \mathrm{~cm})^{2}:(0.25 \mathrm{~km})^{2}$
$1 \mathrm{~cm}^{2}: 0.0625 \mathrm{~km}^{2}$
$40 \mathrm{~cm}^{2}$: $2.5 \mathrm{~km}^{2}$
Answer
(b) \qquad [1]
(c) \qquad $\mathrm{cm}^{2} \quad[1]$
10. Topic: Congruency and Similarity
(b) Since $\triangle A B C$ and $\triangle A C N$ are similar,

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{A C}{A N} \\
\frac{9}{A C} & =\frac{A C}{4} \\
A C^{2} & =36 \\
A C & =\mathbf{6} \text { or }-6 \text { (rej) }
\end{aligned}
$$

If $\triangle A B C$ and $\triangle A C N$ are similar, $\frac{A B}{A C}=\frac{B C}{C N}=\frac{C A}{N A}=k$

(a) In triangles $A B C$ and $A C N \angle A B C=\angle A C N$ (given)

$\angle B A C=\angle C A N$ (common)
$\therefore \triangle A B C$ is similar to $\triangle A C N$.

11. Topic: Trigonometry
(a)

$$
\begin{aligned}
\cos p^{\circ} & =-\cos A \hat{C} D-\cos \left(180^{\circ}-\theta\right)=-\cos \theta \\
& =-\frac{4}{x}
\end{aligned}
$$

(b) Area of trapezium $A B C D=5 \times$ Area of $\triangle A D C$

$$
\begin{aligned}
\frac{1}{2}(A B+D C) \times A D & =5 \times \frac{1}{2} \times A D \times D C \\
\frac{1}{2}(A B+4) & =\frac{5}{2} \times 4 \\
A B+4 & =5 \times 4 \\
A B & =\mathbf{1 6}
\end{aligned}
$$

Area of trapezium
$=\frac{1}{2} \times$ sum of $/ /$ sides \times height

Answer
(a) $\cos p^{\circ}=$ \qquad [1]
(b) $A B=$ \qquad cm [2]

12. Topic: Approximation \& Estimation

(b) Greatest possible mass of 1 cubic centimetre of the glass
$=\frac{\text { greatest possible mass }}{\text { least posible }}$
$=\frac{43.49}{14.5}$
$42.5 \mathrm{~g} \leq$ mass of glass block $<\underline{43.5} \mathrm{~g}$
$\underline{14.5 \mathrm{~cm}^{3} \leq \text { volume of glass block }<15.5 \mathrm{~cm}^{3}, ~}$
$\approx 3.00 \mathrm{~g}$ (3 sig. fig.)[1]
\qquad [2]
13. Topic: Set Language \& Notation

$A \in R$	$\left(A\right.$ has a 90° angle)
$A \notin S$	(A has two 45° angles \Rightarrow isosceles)
$B \notin R$	(By Pythagoras Theorem, $7^{2}+3^{2} \neq 7^{2} \Rightarrow$ not a right-angled
	triangle)
$B \notin S$	(B has two equal 7 cm sides)
$C \in R$	(By Pythagoras Theorem, $3^{2}+4^{2}=5^{2} \Rightarrow$ right-angled triangle)
$C \in S$	(C has three unequal sides)

Answer

14. Topic: Geometry
(a) (i) From $\triangle M D C, M \widehat{D} C=180^{\circ}-D \widehat{M} C-D \widehat{C} M($ sum of interior $\angle \mathrm{s}$ in $\Delta)$

$$
\begin{aligned}
& =180^{\circ}-28^{\circ}-x^{\circ} \\
& =\mathbf{1 5 2}^{\circ}-\boldsymbol{x}^{\circ}
\end{aligned}
$$

(ii) From $\triangle B N C, N \hat{B} C=180^{\circ}-B \widehat{N} C-B \hat{C} N($ sum of interior $\angle \mathrm{s}$ in $\Delta)$

$$
\begin{aligned}
& =180^{\circ}-22^{\circ}-x^{\circ} \\
& =\mathbf{1 5 8}^{\circ}-\boldsymbol{x}^{\circ}
\end{aligned}
$$

Alternative Method:
[using answer from (a)(i)]

$$
\begin{aligned}
N \hat{B} C & =180^{\circ}-M \widehat{D} C(\text { opposite } \angle \mathrm{s} \text { in cyclic quad }) \\
& =180^{\circ}-\left(152^{\circ}-x^{\circ}\right) \\
& =\mathbf{2 8} \mathbf{8}^{\circ}+\boldsymbol{x}^{\circ}
\end{aligned}
$$

Elementary Mathematics（4016／01）

（b）

Alternative Method：
From $\triangle B N C$ ，

$$
\begin{aligned}
B \widehat{N} C+N \hat{B} C+B \hat{C} N & =180^{\circ}(\text { sum of interior } \angle \mathrm{s} \text { in } \Delta) \\
22^{\circ}+28^{\circ}+x^{\circ}+x^{\circ} & =180^{\circ} \\
2 x^{\circ} & =130^{\circ} \\
x & =\mathbf{6 5}
\end{aligned}
$$

Answer（a）（i）$M \widehat{D} C=$ \qquad ［1］
（ii）$N \hat{B C}=158^{\circ}-x^{\circ}$ or $28^{\circ}+x^{\circ}[1]$
（b）$x=$
65
15．Topic：Mensuration
（a）Area of the minor sector $A O B=\frac{1}{2}(4)^{2}(2.5) \quad$ Area of sector $=\frac{1}{2} r^{2} \theta$
$=20$
（b）（i）Reflex angle $A O B=2 \pi-2.5$
（ii）Length of arc $A C B=4(2 \pi-2.5)$
Length of arc $=r \theta$
$=8 \pi-10$
Answer \qquad $\mathrm{cm}^{2} \quad[1]$ （b）（i）$\quad(2 \pi-2.5) \quad$ radians［1］ （ii）$(8 \pi-10)$ cm［1］

16．Topic：Algebra

（a） $3(a-4)=1-(3-a)$
$3 a-12=1-3+a$
$2 a=10$
$a=5$
（b）$\quad y=3 x-7$
$x=y+4$
Sub（2）into（1），

$$
y=3(y+4)-7
$$

$$
y=3 y+12-7
$$

$$
2 y=-5
$$

$$
y=-2.5
$$

Sub $\quad y=-2.5$ into（2），
$x=-2.5+4$
$=1.5$
Answer
（a）$a=$ \qquad
（b）$x=$ \qquad ［2］

Elementary Mathematics（4016／01）

17．Topic：Geometry
（a）（i）$B \widehat{C} D=F \widehat{D} F$（corresponding $\angle \mathrm{s}, F D / / B C$ ）
$=44^{\circ}$
（ii）$B \widehat{D} F=C \widehat{B} D=\mathbf{5 6}^{\circ}$（alternate $\angle \mathrm{s}, F D / / B C$ ）
$A \widehat{B} D=B \widehat{D} C=180^{\circ}-44^{\circ}-56^{\circ}($ adjacent $\angle \mathrm{s}$ on straight line）
$=80^{\circ}$
（iii）$A \hat{F} D=360^{\circ}-B \hat{A} F-A \widehat{B} D-B \widehat{D} F$（sum of interior $\angle \mathrm{s}$ in quadrilateral）
$=360^{\circ}-101^{\circ}-80^{\circ}-56^{\circ}$
$=123^{\circ}$
Answer
（a）（i）$B \hat{C} D=$ \qquad ［1］
（ii）$A \hat{B} D=$ \square 80°［1］
（iii）$A \widehat{F} D=$
 \qquad
（b） since these tw order for $\boldsymbol{A F}$ to be parallel to $B D$ ． \qquad

18．Topic：Indices
（a）（i） $7^{12-3}=7^{9}$

（ii）$\frac{1}{49}=\frac{1}{7^{2}}$
$=7^{-2}$

（iii）$\sqrt[4]{7}=7^{\frac{1}{4}}$

$\boldsymbol{k}=\mathbf{2}$

Answer（a）（i）

Elementary Mathematics（4016／01）

19．Topic：Coordinate Geometry
（a）$\quad x=8$
$y=6-x$
Sub（1）into（2），
$y=6-8$
$=-2$
$\therefore A(8,-2)$
$x=8$
$2 y=3 x+2$

> Sub (1) into (3), $\begin{gathered}2 y=3(8)+2 \\ y=13\end{gathered}$
$\therefore B(8,13)$
Equation of straight line with
（b）

$$
y=6-x
$$

$$
\therefore m=-1
$$

（c）$k=\frac{13+(-2)}{2}$ k is the y－coordinate of the

$$
\begin{equation*}
=5.5 \tag{1}
\end{equation*}
$$

（a）A is $\left(\frac{8}{8}, \frac{-2}{13}\right)$
（b） \qquad
（c）$k=$ \qquad ［1］
［1］

20．Topic：Geometrical Construction

Elementary Mathematics（4016／01）

21．Topic：Graphs of Quadratic Equations
（a）When $y=0$ ，

$$
\begin{aligned}
& -(x-3)(x+1)=0 \\
& x-3=0 \text { or } x+1=0 \\
& x=3 \\
& x=-1
\end{aligned}
$$

When $x=0, \quad y=-(0-3)(0+1)$

$$
=3
$$

y－intercept
（b）line of symmetry：$x=\frac{-1+3}{2}$

$$
=\mathbf{1}
$$

（c） $\operatorname{Sub} x=1$ into y ，

$$
y=-(1-3)(1+1)=4
$$

\therefore Maximum point $(1,4)$

22．Topic：Standard Form

（a） 1.34×10^{-7} seconds $=1.34 \times 10^{2} \times 10^{-9}$ seconds

$$
=134 \text { nanoseconds }
$$

（b）（i）

$$
\begin{aligned}
6.1 \times 10^{7} & =4.8 \times 10^{6} \\
& =10^{6}(6.1 \times 10-4.8) \\
& =56.2 \times 10^{6} \\
& \approx \mathbf{5 . 6} \times \mathbf{1 0}^{\mathbf{7}}
\end{aligned}
$$

$$
\begin{equation*}
273 \% \rightarrow 6.1 \times 10^{7} \tag{ii}
\end{equation*}
$$

$$
100 \% \rightarrow \frac{6.1 \times 10^{7}}{273} \times 100
$$

When quantities are

 multiplied or divided，the no．of sig．fig．is the answe equal to the no．of sig．fig． in the quantity with the smallest no．of sig．fig．$$
=0.02234 \times 10^{9}
$$

$$
\approx 2.2 \times 10^{7}
$$

［1］
［2］

Elementary Mathematics (4016/01)

23. Topic: Statistics (Cumulative Frequency)

(a) From graph,

(b) No. of students gaining $\geq 75 \%$
$=$ total no. of students - no. of students gaining $<75 \%$
= $1200-1060$
= 140
Answer

(a)
(b)
(c)

(d) Paper 1 was more difficult because its median mark of 26 is lower than the median mark of $\mathbf{3 1}$ for paper 2.

GCE 'O' Level October/November 2011 Suggested Solutions

Elementary Mathematics (4016/01)

24. Topic: Kinematics
(b) Ali's speed as he runs to the shop $=\frac{0.8 \mathrm{~km}}{\frac{5}{60} h r} \quad$ Speed $=\frac{\text { Distance }}{\text { Time taken }}$
(c) Ali's speed as he walks home
$=9.6 \mathrm{~km} / \mathrm{h}$
$=\frac{0.8 \mathrm{~km}}{\frac{10}{60} h r}$
$=4.8 \mathrm{~km} / \mathrm{h}$
Ali at rest

