Elementary Mathematics (4016/02)

ELEMENTARY MATHEMATICS

Paper 2 Suggested Solutions
4016/02

October/November 2010

1. Topics: Trigonometry
(Trigonometric Ratios, Pythagoras' Theorem, Bearings)
(a) (i)

$$
\begin{aligned}
B D^{2} & =D M^{2}+M B^{2} \\
M B^{2} & =B D^{2}-D M^{2} \\
& =72^{2}-43^{2} \\
M B & =\sqrt{3335} \\
& =57.749 \\
& \approx \mathbf{5 7 . 7} \mathbf{~ m}(\mathbf{3} \mathbf{~ s i g . ~ f i g .)}
\end{aligned}
$$

Pythagoras Theorem

(ii) $\tan 62^{\circ}=\frac{43}{A M}$

$$
\begin{array}{rlr}
62^{\circ} & =\frac{\square}{A M} & A \\
A M & =\frac{43}{\tan 62^{\circ}} & \\
& =22.863 & 62^{\circ} \\
A B & =A M+M B & \\
& =22.863+\sqrt{3335} & \\
& \approx \mathbf{8 0 . 6} \mathbf{~ m} \text { (3 sig. fig.) } &
\end{array}
$$

(iii) $\sin 23^{\circ}=\frac{72}{C D}$

$$
\begin{aligned}
C D & =\frac{72}{\sin 23^{\circ}} \\
& =184.269 \\
& \approx \mathbf{1 8 4} \mathbf{~ m} \mathbf{(3} \mathbf{~ s i g . ~ f i g .})
\end{aligned}
$$

(b) $\quad \sin M \hat{B} D=\frac{43}{72}$

$$
\begin{aligned}
M \hat{B D} & =\sin ^{-1} \frac{43}{72} \\
& =36.67^{\circ}
\end{aligned}
$$

\therefore Bearing of D from $B=270^{\circ}-36.67^{\circ}$

$$
\approx 233.3^{\circ}(1 \text { d.p. })
$$

2. Topic: Algebra (Solutions to Quadratic Equations, Formulae)
(a) $\frac{x}{8}=\frac{50}{x}$

$$
x^{2}=8(50)
$$

$$
x= \pm \sqrt{400}
$$

$$
=20 \text { or }-20
$$

(b) $\quad \frac{t+p}{4}=\frac{q}{5}$

$$
5(t+p)=4 q
$$

$$
5 t+5 p=4 q
$$

$$
5 t=4 q-5 p
$$

$$
t=\frac{4 q-5 p}{5}
$$

(c) $y=a+\frac{600}{x}$

y : cost per copy; x : total no. of copies

(i) $\operatorname{Sub} x=50, y=17$

$$
\begin{aligned}
17 & =a+\frac{600}{50} \\
a & =17-12 \\
& =\mathbf{5}
\end{aligned}
$$

$$
\text { (ii) } \quad \begin{aligned}
\operatorname{Sub} x=100, \quad y & =5+\frac{600}{100} \\
& =11
\end{aligned}
$$

\therefore When $\mathbf{1 0 0}$ copies are printed, the cost of each copy is $\mathbf{\$ 1 1}$.
(iii) Sub $x=300, y=5+\frac{600}{300}=7$ \qquad
\therefore Total cost $=7 \times 300$

$$
=\$ 2100
$$

(iv) \quad Sub $y=5.20,5.20=5+\frac{600}{x}$
$\frac{600}{x}=0.2$
$x=\frac{600}{0.2}$
$=3000$
$\therefore \mathbf{3 0 0 0}$ copies were printed.

3．Topic：Arithmetic（Application of Mathematics in Practical Situations）
（a）（i）Total amount Alan will pay for the computer

Deposit

$=\frac{1}{3}(1299)+24(40.30)$ \square 24 monthly instalments
（ii）Extra cost of computer（as \％of cash price）

Given in formula sheet

 （compound interest）：Total amount $=P\left(1+\frac{r}{100}\right)^{n}$
$=\$ 1547.129$
Interest Betty will pay $=\$ 1547.129-\$ 1299$

$$
\begin{aligned}
& =\$ 248.129 \\
& \approx \$ 248.13 \text { (2 d. p.) }
\end{aligned}
$$

Total interest $=$
Total amt. - Principal amt.

Total amt．－Principal amt．
（c） $115 \% \rightarrow \$ 759$

$$
1 \% \rightarrow \$ \frac{759}{115}
$$

Selling price
$=$ Cost price $(100 \%)+\operatorname{Profit}(15 \%)$ $=115 \% \times$ Cost price

$$
100 \% \rightarrow \$ \frac{759}{115} \times 100=\$ 660
$$

\therefore The trader paid $\$ 660$ for the camera．

4．Topic：Coordinate Geometry；Vectors in Two Dimensions
（a）Equation of $A B$ ：

$$
\begin{aligned}
\frac{y-4}{x-(-5)} & =\frac{4}{3} \\
y-4 & =\frac{4}{3}(x+5) \\
y-4 & =\frac{4}{3} x+\frac{20}{3} \\
y & =\frac{4}{3} x+\frac{20}{3}+4 \\
y & =\frac{4}{3} x+10 \frac{2}{3} \\
\mathbf{3 y} & =\mathbf{4} x+\mathbf{3 2}
\end{aligned}
$$

（b）From（a）， $3 y=4 x+32$
Given $2 x+9 y=68$ ，

$$
\begin{equation*}
x=\frac{68-9 y}{2} \tag{2}
\end{equation*}
$$

Sub（2）into（1）， $3 y=4\left(\frac{68-9 y}{2}\right)+32$

$$
3 y=136-18 y+32
$$

Equation of straight line passing through $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ ：

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\text { gradient } m
$$

Alternative Method

Equation of straight line with gradient $m \& y$－ intercept c ：

$$
\begin{equation*}
y=m x+c \tag{1}
\end{equation*}
$$

$y=\frac{4}{3} x+c$
Sub $(-5,4)$ ，

$$
4=\frac{4}{3}(-5)+c
$$

$c=\frac{32}{3}$
$\therefore y=\frac{4}{3} x+10 \frac{2}{3}$

$$
21 y=168
$$

$$
y=8
$$

Elementary Mathematics（4016／02）

（ii） $\overrightarrow{A E}=\overrightarrow{O E}-\overrightarrow{O A}$
$\overrightarrow{O E}=\overrightarrow{A E}+\overrightarrow{O A}$
$=\binom{6}{1}+\binom{-5}{4}$
$=\binom{1}{5}$
\therefore Coordinates of $E=(1,5)$
（iii）$\quad \overrightarrow{O D}=\binom{4}{2}$
（a） $\overrightarrow{D E}=\overrightarrow{O E}-\overrightarrow{O D}$

$$
\begin{array}{ll}
\text { From (c)(ii), } & =\binom{1}{5}-\binom{4}{2} \\
\overrightarrow{O E}=\binom{1}{5} & =\binom{-3}{3}
\end{array}
$$

（b） $\overrightarrow{D B}=\overrightarrow{O B}-\overrightarrow{O D}$

$$
\begin{aligned}
& \text { From (b), } \quad=\binom{-2}{8}-\binom{4}{2} \\
& \overrightarrow{O B}=\binom{-2}{8} \quad=\binom{-6}{6}
\end{aligned}
$$

（iv） $\overrightarrow{D E}=3\binom{-1}{1}$
$\overrightarrow{D B}=6\binom{-1}{1}$

$$
\overrightarrow{A B}=k \overrightarrow{B C}
$$

$$
\Rightarrow A, B, C \text { are collinear }
$$

(straight line)

Since $\overrightarrow{D B}=2 \overrightarrow{D E}=k \overrightarrow{D E}$
$\Rightarrow \boldsymbol{D}, \boldsymbol{E}$ and \boldsymbol{B} are collinear（i．e．they all lie on a straight line） and since $\overrightarrow{D B}=2 \overrightarrow{D E}$
$\Rightarrow E$ is the mid－point of D and B ．

5．Topic：Angles of Polygon
（a）（i）

$$
\begin{aligned}
\angle X C D & =\frac{360^{\circ}}{15} \\
& =\mathbf{2 4}^{\circ}
\end{aligned}
$$

Each exterior \angle of a regular n－sided polygon $=\frac{360^{\circ}}{n}$
NOTE：X is not part of polygon $A B C D E F$.$!\Rightarrow \angle X C D$ is an exterior \angle
（ii）Since $A B C D E F \ldots$ is a regular polygon and $\angle X C D \& \angle X D C$ are exterior angles，
$\Rightarrow \angle X C D=\angle X D C=24^{\circ}$
$\Rightarrow \triangle X C D$ is isosceles
$\Rightarrow \angle C X D=180^{\circ}-\angle X C D-\angle X D C($ sum of $\angle \mathrm{s}$ in $\triangle)$
$=180^{\circ}-24^{\circ}-24^{\circ}$
$=132^{\circ}$
（b）Given $B C=D E=a$
From（a）（ii），$\triangle X C D$ is a isosceles

$$
\begin{aligned}
\Rightarrow X C & =X D=b \\
X B & =B C+C X=a+b \\
X E & =D E+X D=a+b
\end{aligned}
$$

Hence $X B=X E$ ．
（c）From（b），$\triangle X B E$ is isosceles，

$$
\begin{aligned}
\Rightarrow \angle X B E & =\angle X E B=\frac{180^{\circ}-\angle C X D}{2}=24^{\circ} \\
\angle B E F & =180^{\circ}-\text { exterior } \angle-\angle X E B \\
& =180^{\circ}-24^{\circ}-24^{\circ} \\
& =\mathbf{1 3 2}^{\circ}
\end{aligned}
$$

Alternative Method

$$
\begin{aligned}
\angle B E F & =\angle D E F-\angle X E B \\
& =\frac{(15-2) \times 180^{\circ}}{15}-24^{\circ} \\
& =\mathbf{1 3 2}
\end{aligned}
$$

Each interior \angle of a regular n－sided polygon $=\frac{(n-2) \times 180^{\circ}}{n}$
6. Topics: Solutions to Quadratic Equations
(a) Number of hours. John took $=\frac{42}{x}$
Time taken $=\frac{\text { Distance }}{\text { Speed }}$
(b) Number of hours Peter took $=\frac{42}{x-\frac{1}{2}}$
(c) $\frac{42}{x-\frac{1}{2}}-\frac{42}{x}=\frac{10}{60}$

$$
\frac{84}{2 x-1}-\frac{42}{x}=\frac{1}{6}
$$

$$
\frac{84 x-42(2 x-1)}{(2 x-1) x}=\frac{1}{6}
$$

$$
\frac{84 x-84 x+42}{2 x^{2}-x}=\frac{1}{6}
$$

General solution to a quadratic

$$
42(6)=2 x^{2}-x
$$ equation $a x^{2}+b x+c$:

$$
2 x^{2}-x-252=0(\text { Shown })
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(d) $2 x^{2}-x-252=0$

$$
\begin{array}{rlrl}
x & =\frac{1 \pm \sqrt{(-1)^{2}-4(2)(-252)}}{2(2)} & \begin{array}{l}
\text { Question simply asks to solve } \\
\text { the equation. Do NOT reject the } \\
\text { negative value of } x \text { here! }
\end{array} \\
& =\frac{1 \pm \sqrt{2017}}{4} & &
\end{array}
$$

$$
=11.4777 \text { or }-10.9777
$$

$$
\approx 11.478 \text { or }-10.978 \text { (3 d.p.) }
$$

(e) Taking $x=11.4777$ from (d), time that John took to complete the race
$=\frac{42}{11.4777}$
$=3.65925$ hours
$=3 \mathrm{hrs} 39.555 \mathrm{~min}$
≈ 3 hrs 39 min 33 seconds
7. Topic: Trigonometry
(a) $\cos P \widehat{Q} R=\frac{95^{2}+102^{2}-170^{2}}{2(95)(102)}$

Cosine rule: $c^{2}=a^{2}+b^{2}-2 a b \cos C$

(b) In $\triangle B P Q$,

$$
\begin{aligned}
\tan x & =\frac{23}{95} \\
x & =13.609^{\circ} \\
& \approx 13.6^{\circ}(1 \text { d.p. })
\end{aligned}
$$

$$
\begin{aligned}
P \widehat{Q} R & =\cos ^{-1}(-0.48869) \\
& =119.255 \\
& \approx \mathbf{1 1 9 . 3 ^ { \circ }}(\mathbf{1} \mathbf{d . p} .)
\end{aligned}
$$

Angle of depression of Q from $B=\mathbf{1 3 . 6}{ }^{\circ}$
(c)

(d) (i) $\frac{77.634}{3}=25.87$
\therefore Number of panels that needs to be bought $=\mathbf{2 6}$
(ii) Number of posts required $=27$
\therefore Total cost of the panels and post
$=26 \times 28.50+27 \times 14.95$
$=\$ 1144.65$

Rounded up to $26 \because$ need to buy $26 \times$ panels (of unit length 3 m) to fence up the full distance of $R S$.

26 posts for each of the panels +1 extra post at the end.

8．Topics：Trigonometry，Mensuration
（a）（i）

$$
\begin{aligned}
& \Rightarrow \text { Length of major arc } P R Q+2 \times \text { radius }(r)=44 \mathrm{~m} \\
& \text { Arc length }=r \theta \\
& \text { Note: } \theta \text { must be in radians } \\
& \text { and can be reflex. } \\
& \begin{aligned}
r \theta+2 r & =44 \\
8 \theta+2(8) & =44 \\
\theta & =\frac{28}{8}
\end{aligned} \\
& \theta=\frac{28}{8} \\
& =3.5 \text { radians }
\end{aligned}
$$

（ii）Obtuse $\angle P O Q(\alpha)=2 \pi-$ reflex $\angle P O Q(\theta)(\angle \mathrm{s}$ at a pt．）

$$
\Rightarrow \quad \alpha=2 \pi-3.5 \text { radians }
$$

Area of $\triangle P O Q=\frac{1}{2}(O P)(O Q) \sin \alpha$

```
Area of }\Delta=\frac{1}{2}ab\operatorname{sin}
```

$$
\begin{aligned}
& =\frac{1}{2}(8)^{2} \sin (2 \pi-3.5) \\
& =11.225 \\
& \approx \mathbf{1 1 . 2} \mathbf{~ m}^{\mathbf{2}} \mathbf{(\mathbf { 3 } \mathbf { ~ s . f . })}
\end{aligned}
$$

Calculator must be in RAD mode to perform this sin operation！
（iii）Area of major sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& \quad V M
\end{aligned} \quad=\sqrt{V N^{2}+N M^{2}},
$$

（b）（i）Volume of the bollard
$=$ Volume of pyramid + Volume of cuboid $=\frac{1}{3}(10)(10)(12)+(10)(10)(30)$
$=3400 \mathrm{~cm}^{3}$
（ii）Let M be the midpoint of $B C$ ．
Using Pythagoras＇Theorem in $\triangle V N M$ ，

Volume of pyramid $=\frac{1}{3} \times$ base area \times height

\therefore Surface area of the bollard
$=[4 \times$ Area of $\triangle V B C]+[$ Perimeter of $A B C D \times A E]$
$=4 \times\left(\frac{1}{2} \times 10 \times 13\right)+(10+10+10+10) \times 30$
$=1460 \mathrm{~cm}^{2}$

Surface area of cuboid （excl．top \＆base）

Elementary Mathematics（4016／02）

9．Topic：Graphical Solution of Equations
（a）

（b）From the graph
（i）Mass of the baby after 63 days $=\mathbf{5 . 1 5} \mathbf{~ k g}$
（ii）Days since birth when the baby＇s mass was least＝ $\mathbf{1 8}$ days
（iii）Days since birth when the baby regained its birth mass $=\mathbf{3 1}$ days
（c）（i）From the tangent drawn in the graph，gradient of the curve at $(7,3.10)$

$$
\begin{aligned}
& =\frac{3.45-2.40}{-10-40} \\
& =-\mathbf{0 . 0 2 1 0} \text { (} \mathbf{3} \text { s.f.) }
\end{aligned}
$$

（ii）This gradient represents the rate of change of the baby＇s mass at seven days since birth（i．e．$t=7$ ）．
（d）As the graph is non－linear，it is not appropriate to estimate the mass of the baby when it is 1 year old by extending the graph linearly up to $t=$ 365.

Elementary Mathematics (4016/02)

10. Topics: Statistics, Simple Probability
(a) (i) $a=28 \div 4=7$
$b=60-(12+15+10+7+4+0+2+1)=9$
$c=0 \times 12=\mathbf{0}$
$d=3 \times 9=\mathbf{2 7}$
$e=0+15+20+27+28+20+0+14+8=\mathbf{1 3 2}$
(ii) Mean $=\frac{\Sigma f x}{\Sigma f}$
$=\frac{132}{60}$
$=2.2$
Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\Sigma f}\right)^{2}} \quad \frac{\sum f x}{\sum f}$ from (a)(ii)
$=\sqrt{\frac{510}{60}-(2.2)^{2}}$
$=1.9131$
≈ 1.91 ($\mathbf{3}$ sig. fig.) no. of pupils who had read exactly 6 books
(b) P (One pupil read exactly 6 books) $=\frac{0}{60}=\mathbf{0} \quad$ total no. of pupils in group
(c) $\mathrm{P}($ Both had read more than 4 books $)=\left(\frac{7}{60}\right)\left(\frac{6}{59}\right)=\frac{7}{590}$
$\mathrm{P}\left[1^{\text {st }}\right.$ pupil (chosen from the 60) had read >4 books $]$ AND
$P\left[2^{\text {nd }}\right.$ pupil (chosen from the remaining 59) had read >4 books]
