Elementary Mathematics (4016/01)

ELEMENTARY MATHEMATICS

Paper 1 Suggested Solutions
October/November 2010

1. Topic: Arithmetic (Percentages\& Fractions)
(a) $\frac{3}{35} \times 100 \approx \mathbf{8 . 5 7 \%}$ ($\mathbf{3}$ sig. fig.)
(b) $17 \frac{1}{2} \div 100=\frac{7}{40}$

$$
\begin{aligned}
& \text { Answer (a) } 8.57 \\
& \text { (b) } \frac{7}{40} \\
& \hline
\end{aligned}
$$ \% [1][1]

2. Topic: Arithmetic (Approximation \& Estimation)

$$
\begin{aligned}
\frac{3.93}{(7.47+3.02) 5.67} & =0.06607 \\
& \approx \mathbf{0 . 0 6 6}(\mathbf{2} \text { sig. fig.) }
\end{aligned}
$$

Answer
\qquad
3. Topic: Algebra

$$
\begin{aligned}
3 x^{3}-12 x y^{2} & =3 x\left(x^{2}-4 y^{2}\right) \\
& =\mathbf{3 x}(\boldsymbol{x}+\mathbf{2 y})(\boldsymbol{x}-\mathbf{2} \boldsymbol{y})
\end{aligned}
$$

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Answer \qquad $3 x(x+2 y)(x-2 y)$ [2]
4. Topic: Algebra (Indices)
(a) $3^{23} \div 27=3^{k}$

$$
3^{23} \div 3^{3}=3^{k}
$$

$$
3^{k}=3^{23-3}
$$

$$
k=\mathbf{2 0}
$$

$$
\frac{a_{m}}{a_{n}}=a^{m-n}
$$

(b) $1 \div 2 x^{-5}=1 \div\left(2 x^{-5}\right)$

$$
\begin{aligned}
& =1 \div\left(\frac{2}{x^{5}}\right) \\
& =1 \times \frac{x^{5}}{2} \\
& =\frac{x^{5}}{2}
\end{aligned}
$$

(b) \qquad [1]
5. Topic: Arithmetic (Directed numbers in practical situations)
(a) Difference in temperature between the first and third day $=t-(-3)$

$$
=(t+3)^{\circ} \mathrm{C}
$$

(b) Mean temperature for 3 days $=\frac{(-3)+5+t}{3}$

$$
=\frac{t+2}{3}{ }^{\circ} \mathrm{C}
$$

Answer (a) \qquad ${ }^{\circ} \mathrm{C}$ [1]
(b) \qquad

Elementary Mathematics（4016／01）

6．Topic：Arithmetic（Ratio \＆Proportion）
Let $\$(x)$ be the unit share of money．
$\Rightarrow \quad A$＇s share $=\$(2 x)$

$$
\text { Total sum of money }=\$(2 x+3 x+4 x)=\$(9 x)
$$

If the money was divided equally，A would have $\$\left(\frac{9 x}{3}\right)=\$(3 x)$ ．
Given that A would have received an extra $\$ 20$ ，

$$
\begin{aligned}
\$(3 x-2 x) & =\$ 20 \\
x & =20
\end{aligned}
$$

\therefore Total sum of money $=\$(9 x)$

$$
=\$(9 \times 20)
$$

$$
=\$ 180
$$

Alternative Method：

	Before	After
A＇s share	2	3
B＇s share	3	3
C＇s share	4	3
Total sum	9	9

Extra shares of money A receives $=3-2=1$

$$
\begin{aligned}
\therefore 1 \text { share } & \rightarrow \$ 20 \\
9 \text { shares } & \rightarrow \$ 20 \times 9=\mathbf{\$ 1 8 0}
\end{aligned}
$$

Answer \＄ \qquad ［2］

7．Topic：Algebra（Solving Quadratic Equations by Factorisation）
（a） $2 x^{2}-5 x-3=(\mathbf{2 x}+\mathbf{1})(x-3)$
（b） $2 x^{2}-5 x-3=0$

$$
(2 x+1)(x-3)=0
$$

$x=-\frac{1}{2}$ or $x=3$

Hence question：use factorized expression from（a）．

Answer（a） \qquad
（b）$x=-\frac{1}{2}$ or 3
\qquad

8．Topic：Inequalities

$$
\begin{array}{rlrlrl}
\text { Given } & -2 & \leq 2 x+4<18 & & \\
-2 & \leq 2 x+4 & \text { and } & & 2 x+4 & <18 \\
-6 & \leq 2 x & & 2 x & <14 \\
x & \geq-3 & x & <7 \\
\therefore-\mathbf{3} & \leq x<7 . & & &
\end{array}
$$

Inequality sign reversed when multiplying both sides by -1

Answer

Elementary Mathematics（4016／01）

9．Topics：Geometry
（a）$O A=O C=$ radius of circle
$\Rightarrow \triangle O A C$ is isosceles

$$
\begin{aligned}
\therefore \angle A O C= & 180^{\circ}-28^{\circ}-28^{\circ} \\
= & \mathbf{1 2 4 ^ { \circ }} \\
& (\text { sum of interior } \angle \mathrm{s} \text { of } \Delta)
\end{aligned}
$$

（b）Reflex $\angle A O C=360^{\circ}-124^{\circ}$ （ $\angle \mathrm{s}$ at a point）

$$
=236^{\circ}
$$

$$
\therefore \angle A B C=\frac{236^{\circ}}{2}(\angle \text { at centre }=2 \times \angle \mathrm{s} \text { at circumference })
$$

$$
=118^{\circ}
$$

（c）$\angle O A T=\angle O C T=90^{\circ}$（radius of circle \perp tangent） In quadrilateral OATC，

$$
\angle A T C=360^{\circ}-90^{\circ}-90^{\circ}-124^{\circ}
$$

$$
=\mathbf{5 6}^{\circ}
$$

Answer（a）$A \hat{O} C=$ \qquad ［1］
（b）$A \widehat{B} C=$ \qquad 118° ［1］
（c）$A \widehat{T} C=$ \qquad ［1］

10．Topic：Factors \＆Multiples
（a） $168=\mathbf{2}^{\mathbf{3}} \times \mathbf{3} \times \mathbf{7}$
（b）（i）Given $4900=2^{2} \times 5^{2} \times 7^{2}$

$$
=2 \times 2 \times 5 \times 5 \times 7 \times 7
$$

$$
\text { and } 168=2 \times 2 \times 2 \times 3 \times 7
$$

$$
\text { LCM of } 4900 \text { and } 168=2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 7
$$

$$
=2^{3} \times 3 \times 5^{2} \times 7^{2}
$$

（ii）HCF of 4900 and $168=2 \times 2 \times 7$

$$
=28
$$

Answer
（b）（i） \qquad ［1］
（ii） \qquad ［1］

11．Topic：Probability
（a）$\quad \mathrm{P}($ Total of the three numbers shown is 18$)=\mathrm{P}(6,6,6)$

$$
\begin{aligned}
& =\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \\
& =\frac{1}{216}
\end{aligned}
$$

（b） $\mathrm{P}($ Three dice show the same number）

$$
\begin{aligned}
& =\mathrm{P}(1,1,1)+\mathrm{P}(2,2,2)+\mathrm{P}(3,3,3)+\mathrm{P}(4,4,4)+\mathrm{P}(5,5,5)+\mathrm{P}(6,6,6) \\
& =\frac{1}{216} \times 6 \\
& =\frac{1}{36}
\end{aligned} \begin{aligned}
& \text { Note: There's only one chance to throw the three dice } \\
& \Rightarrow \begin{array}{l}
\text { the events above are mutually exclusive since if for } \\
\text { e.g. }(1,1,1) \text { occurs, none of the rest can possibly } \\
\text { occur. Hence it's a case of }(1,1,1) \text { OR }(2,2,2) \text { OR } \\
\text { (3.3,3) OR } \ldots
\end{array}
\end{aligned}
$$

Elementary Mathematics（4016／01）

（c） P （Total of the three numbers shown is 17）

$$
=P(6,6,5)+P(6,5,6)+P(5,6,6)
$$

$$
=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times 3
$$

$$
=\frac{1}{72}
$$

Answer（a）$\left.\frac{\frac{1}{216}}{\text {（b）}} \begin{array}{r}\text {［1］} \\ \text {（c）}\end{array}\right]$	
	$\frac{1}{36}$
［1］	

12．Topic：Set Language $\&$ Notation
$\varepsilon=\{-3,-2,-1,0,1,2,3\}$
$A=\{-2,-1,0,1,2\}$
$B=\{1,2,3\}$
（a）$A^{\prime}=\{-\mathbf{3}, \mathbf{3}\}$
（b）$A \cap B=\{\mathbf{1 , 2}\}$
（c）$A \cup B=\{\mathbf{- 2}, \mathbf{- 1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$

13．Topic：Variation
（a）$\quad V=\frac{k}{P}, k$ is a constant． Given $V=3 \mathrm{~m}^{3}, P=200 \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
\Rightarrow 3 & =\frac{k}{200} \\
k & =600 \\
\therefore V & =\frac{600}{P}
\end{aligned}
$$

Inverse variation：
 $$
y \propto \underset{x}{1} \Rightarrow y=\frac{k}{x}
$$

When $P=150 \mathrm{~N} / \mathrm{m}^{2}, \quad V=\frac{600}{150}=\mathbf{4} \mathbf{m}^{3}$
（b）When $V=5 \mathrm{~m}^{3}, 5=\frac{600}{P}$

$$
P=\frac{600}{5}=\mathbf{1 2 0} \mathrm{N} / \mathrm{m}^{2}
$$

Answer（a） \qquad m^{3}［2］
（b） \qquad $\mathrm{N} / \mathrm{m}^{2}$［1］

14．Topic：Standard form
（a） $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$
$=3 \times 10^{5} \times 1000 \mathrm{~m} / \mathrm{s}$
$=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~km} / \mathrm{s}=1000 \mathrm{~m} / \mathrm{s}$
（b）Distance $=1 \mathrm{~m}$ ；Speed $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\therefore \text { Time taken } & =\frac{1}{3 \times 10^{8}} \\
& =3 \frac{1}{3} \times 10^{-9} \mathrm{~s} \\
& =3 \frac{1}{3} \text { nanoseconds }
\end{aligned}
$$

$$
1 \text { nano }=1.0 \times 10^{-9}
$$

Answer（a） \qquad m / s［1］
（b） \qquad nanoseconds［2］

Elementary Mathematics（4016／01）

15．Topic：Matrices
（a）$\left(\begin{array}{lll}7 & 2 & 3 \\ 6 & 6 & 2\end{array}\right)\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)=\binom{7 \times 3+2 \times 1+3 \times 0}{6 \times 3+6 \times 1+2 \times 0}$

$$
=\binom{23}{24}
$$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{a x+b y+c z}{d x+e y+f z}
$$

Answer（a）

（b）
of points awarded ［1］

16．Topic：Algebra（Algebraic manipulation）
（a）$\frac{3 a^{2}}{7 b c} \div \frac{9 a}{14 b}=\frac{3 a^{2}}{7 b c} \times \frac{14 b}{9 a}$
$=\frac{2 a}{3 c}$
（b）$\frac{2 x}{(2 x-3)^{2}}-\frac{1}{2 x-3}=\frac{2 x-(2 x-3)}{(2 x-3)^{2}}$

$$
\begin{aligned}
& =\frac{2 x-2 x+3}{(2 x-3)^{2}} \\
& =\frac{3}{(2 x-3)^{2}}
\end{aligned}
$$

（b）$\overline{(2 x-3)^{2}}$

Elementary Mathematics（4016／01）

17．Topic：Graphs in Practical Situations（Distance－Time Graphs）

（a）Time between 0804 and 0810 is $\mathbf{6}$ minutes．
（b）At 0815，distance from house $=2.9 \mathrm{~km}$
Distance from house to school $=5.4 \mathrm{~km}$
\therefore Distance she was from school $=5.4 \mathrm{~km}-2.9 \mathrm{~km}$

$$
=2.5 \mathrm{~km}
$$

Since the sets of marks are not skewed by extreme values，it＇s more accurate to compare their mean marks（instead of median or mode）so that all marks are taken into account．
（c）Distance between school and bus stop $=5.4 \mathrm{~km}-0.4 \mathrm{~km}=5 \mathrm{~km}$

$$
\text { Time takenby bus to reach school }=10 \mathrm{mins}=\frac{10}{60} \mathrm{hr}
$$

$$
\begin{aligned}
\therefore \text { Speedof bus } & =\frac{\mathbf{5}}{\frac{10}{60}} \\
\text { Speed }=\frac{\text { Distance }}{\text { Time }} & =\mathbf{3 0} \mathbf{~ k m} / \mathbf{h}
\end{aligned}
$$

（d）Time taken by Sam $=\frac{\text { Distance }}{\text { Speed }}$
$=\frac{5.4}{20}$
$=0.27 \mathrm{~h}$
$=0.27 \mathrm{hr}$
$=0.27 \times 60$ minutes
$=16.2$ minutes
Answer \qquad minutes［1］
（b）
km［1］
（c） \qquad km／h［1］
（d）See graph ［1］

18．Topic：Statistics（Mean，Median \＆Mode）
（a） Mode $=\mathbf{7 5}$ marks
（b）Middle position $=8^{\text {th }}$ position
Median $=\mathbf{6 9}$ marks
Mode $=$ the number which occurs most frequently
$38,58,59,59,64,67,68, \underline{\mathbf{6 9}}$ ，
（c）Mean mark of boys $=62$ marks
Mean mark of girls $=67.6$ marks
\therefore The girls performed better．
Answer（a）
（b） \qquad ［1］
（c）The girls performed better because their mean mark（67．6）is higher than the mean mark（62）of the boys．

Elementary Mathematics（4016／01）

19．Topic：Graphs（Graphs of Quadratic Functions）

Answer
（a）

（b）（i）

［2］
（b）（ii）$\quad x=-1.5$ ［1］

Line of symmetry of quadratic graph passes through max $/ \mathrm{min}$ point．

$$
\therefore x=\frac{-4+1}{2}=-1.5
$$

20．Topic：Coordinate Geometry
（a）Area of $\triangle A B C=\frac{1}{2}(6-3)(5-1)$
$=6$ units 2
Area of trapezium $=\frac{1}{2} \times($ sum of parallel sides $) \times$ height
（b）Area of trapezium $=\frac{1}{2}(3+l)(4)$

$$
\begin{aligned}
14 & =2(3+l) \\
3+l & =7 \\
l & =4 \\
\Rightarrow x_{D} & =9-4=5
\end{aligned}
$$

\therefore Coordinates of $D=(5,5)$

（c）Area of $\triangle A B E=9$ units 2

$$
\begin{aligned}
\frac{1}{2}(3)(h) & =9 \\
h & =6
\end{aligned}
$$

From the diagram，

$$
\begin{aligned}
& \quad k_{1}=1+6=7 \\
& k_{2}=1-6=-5 \\
& \Rightarrow E(2,7) \text { or } E(2,-5) \\
& \therefore \boldsymbol{k}=\mathbf{7} \text { or } \boldsymbol{k}=-\mathbf{5} .
\end{aligned}
$$

Answer（a） \qquad units ${ }^{2}$［1］
（b） ， 5 ）［2］
（c）k \qquad or2］

Elementary Mathematics（4016／01）

21．Topic：Arithmetic
（a）Walking distance $=1000 \mathrm{~m}=1 \mathrm{~km}$

$$
\therefore \text { Walking time }=\frac{1}{4} \mathrm{~h}
$$

$$
=15 \text { minutes }
$$

（b）Running distance $=1.3 \mathrm{~km}$

$$
\begin{aligned}
\text { Running time } & =5 \text { minutes }=\frac{5}{60} \text { hour } \quad \text { Speed }=\frac{\text { Distance }}{\text { Time }} \\
\therefore \text { Running speed } & =1.3 \div \frac{5}{60} \\
& =\mathbf{1 5 . 6} \mathbf{~ k m} / \mathbf{h}
\end{aligned}
$$

（c）Total distance $=1+1.3=2.3 \mathrm{~km}$

$$
\text { Total time }=15+5=20 \text { minutes }=\frac{20}{60} \text { hour }
$$

$$
\therefore \text { Average speed }=2.3 \div \frac{20}{60}
$$

$$
=6.9 \mathrm{~km} / \mathrm{h}
$$

$$
\text { Average speed }=\frac{\text { Total distance }}{\text { Total time }}
$$

Answer（a）	15	minutes［1］
（b）	15.6	$\mathrm{~km} / \mathrm{h}$
［2］		
（c）	6.9	$\mathrm{~km} / \mathrm{h}$

22．Topics：Algebra

（a）Next two odd numbers after $2 n-1$ are

$$
(2 n-1)+2=\mathbf{2 n}+\mathbf{1} \text { and }
$$

$$
(2 n-1)+2+2=\mathbf{2} \boldsymbol{n}+\mathbf{3}
$$

（b）（i）Sum of three odd numbers $=(2 n-1)+(2 n+1)+(2 n+3)$

$$
\begin{aligned}
& =6 n+3 \\
& =\mathbf{3}(2 n+1)
\end{aligned}
$$

（ii）Since $3(2 n+1)$ has 3 as a factor，we conclude the sum is a multiple of 3 ．
（c）Sum $=(2 n-1)^{2}+(2 n+1)^{2}+(2 n+3)^{2}$

$$
\begin{array}{ll}
=4 n^{2}-4 n+1+4 n^{2}+4 n+1+4 n^{2}+12 n+9 \\
=\mathbf{1 2} \boldsymbol{n}^{2}+\mathbf{1 2 n} \mathbf{n} \mathbf{1 1} & (a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{array}
$$

Answer
（a） $2 n+1$ and $2 n+3$［1］
（b）（i）
$3(2 n+1)$
（b）（ii）Since $3(2 n+1)$ has 3 as a factor，we conclude the sum is a multiple of 3 ．
（c） $12 n^{2}+12 n+11$

Elementary Mathematics (4016/01)

23. Topics: Similarity \& Congruency
(a) In $\triangle A L B$ and $\triangle N L D$,

$$
\begin{aligned}
\angle A L B= & \angle N L D(\text { vert. opp. } \angle \mathrm{s}) \\
\angle L B A= & \angle L D N \\
& \text { (alt. } \angle \mathrm{s}, A B / / D C \text { since } \\
& A B C D \text { is a parallelogram) }
\end{aligned}
$$

$\therefore \triangle A L B$ is similar to $\triangle N L D$
(b) Choose any one:
$\triangle N C M$ is similar to $\triangle A B M$. $\triangle N C M$ is similar to $\triangle N D A$.
(c) $\triangle D A B$ is congruent to $\triangle B C D$.
(d) Given $D L=3 L B \Rightarrow \frac{L B}{D L}=\frac{1}{3}$
(i) Since $\triangle A L B \& \triangle N L D$ are similar, (from (a))

$$
\begin{array}{rlrl}
\frac{A B}{N D} & =\frac{L B}{L D}=\frac{1}{3} & N D & =C N+D C \\
\frac{A B}{C N} & =\frac{A B}{\frac{2}{3} N D} & & =C N+A B \\
& & =C N+\frac{1}{3} N D \\
& =\frac{1}{3} \div \frac{2}{3}=\frac{\mathbf{1}}{\mathbf{2}} & \Rightarrow C N & =\frac{2}{3} N D
\end{array}
$$

$$
\text { (ii) } \begin{aligned}
\frac{\text { Area of } \triangle A B L}{\text { Area of } \triangle A D L} & =\frac{\frac{1}{2}(L B)(h)}{\frac{1}{2}(L D)(h)} \\
& =\frac{L B}{L D} \\
& =\frac{\mathbf{1}}{\mathbf{3}}
\end{aligned}
$$

(iii) Since $\triangle L M B \& \triangle L A D$ are similar,

$$
\begin{aligned}
\frac{\text { Area of } \triangle M L B}{\text { Area of } \triangle A L D} & =\left(\frac{L B}{L D}\right)^{2} \quad \text { Area of similar figures } \Rightarrow \frac{A_{1}}{A_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2} \\
& =\left(\frac{1}{3}\right)^{2} \\
& =\frac{\mathbf{1}}{\mathbf{9}}
\end{aligned}
$$

Answer (a) In $\triangle \mathrm{s} A L B$ and $N L D \angle A L B=\angle N L D$ (vert. opp. $\angle \mathrm{s}$)

$$
\angle L B A=\angle L D N(\text { alt. } \angle \mathrm{s}, A B / / D C \text { since } A B C D \text { is a } / / \mathrm{gram})
$$

$\therefore \triangle A L B$ is similar to $\triangle N L D$.				
				[2]
(b)	$\triangle A B M$ or $\triangle N D A$			[1]
(c)	$\triangle D A B$	and	$\triangle B C D$	[1]
(d)(i)		$\frac{1}{2}$		[1]
		1		
(d)(ii)		$\overline{3}$		[1]
		1		
(d)(iii)		$\overline{9}$		[1]

Elementary Mathematics（4016／01）

24．Topic：Geometrical Constructions
Answer（a），（b）and（d）
［1］，［1］，［2］

Answer（c）The point P is equidistant from the lines \qquad and $A B$ and equidistant from the points \qquad and \qquad ［1］

