ELEMENTARY MATHEMATICS

Paper 2 Suggested Solutions
4016/02
October/November 2009

1. Topics: Arithmetic (Time, Speed and Percentages)
(a) (i) $1 \frac{1}{2}$ hours $=1 \frac{1}{2} \times 60$

$$
=90 \text { minutes }
$$

Time he spends warming up $=\frac{90}{12} \times 3$

$$
=22.5 \text { minutes }
$$

(ii) $\%$ of the $1 \frac{1}{2}$ hours at the sports centre he spends running

$$
\begin{aligned}
& =\frac{7}{2+3+7} \times 100 \% \\
& =\mathbf{5 8} \frac{\mathbf{1}}{\mathbf{3}} \%
\end{aligned}
$$

(b) (i) \quad Speed $=\frac{3000 \mathrm{~m}}{9 \frac{1}{2} \text { minutes }}$

$$
\text { Speed }=\frac{\text { Distance travelled }}{\text { Time taken }}
$$

$$
\begin{aligned}
& =\frac{3}{\frac{99_{2}^{2}}{60}} \mathrm{~km} / \mathrm{h} \\
& =\mathbf{1 8} \frac{\mathbf{1 8}}{\mathbf{1 9}} \mathbf{~ k m} / \mathrm{h}
\end{aligned}
$$

(ii) His best time in $2009=90 \% \times 9 \frac{1}{2}$ minutes
$100 \% \rightarrow 2008$ time $90 \% \rightarrow 2009$ time
$=8.55$ minutes
$=8$ minutes 33 seconds
(iii) His best time in 2007
$=\frac{9.5}{95} \times 100$
$=\mathbf{1 0}$ minutes $\mathbf{0}$ seconds
$100 \% \rightarrow 2007$ time $95 \% \rightarrow 2008$ time
2. Topic: Algebra (Factorisation, Formulae)
(a) (i) $25-p^{2}=5^{2}-p^{2}$ \qquad $a^{2}-b^{2}=(a+b)(a-b)$
(ii) $\frac{25-p^{2}}{15+3 p}=\frac{(5+p)(5-p)}{3(5+p)}$

$$
=\frac{5-p}{3}
$$

(b) $\frac{3}{(x+2)^{2}}-\frac{4}{x+2}=\frac{3-4(x+2)}{(x+2)^{2}}$
$=\frac{3-4 x-8}{(x+2)^{2}}$
$=\frac{-4 x-5}{(x+2)^{2}}$
(c) $v^{2}=u^{2}-2 g h$
(i) When $u=30, g=9.8$ and $h=24$,
$v^{2}=30^{2}-2(9.8)(24)$
$=900-470.4$
$v^{2}=429.6$
$v= \pm \sqrt{429.6}$
$= \pm 20.726$
$\approx \pm 20.7$ ($\mathbf{3}$ sig. fig.)
(ii) $v^{2}=u^{2}-2 g h$
$u^{2}=v^{2}+2 g h$
$\boldsymbol{u}= \pm \sqrt{\boldsymbol{v}^{2}+2 \boldsymbol{g h}}$

3．Topic：Trigonometry（Trigonometrical Ratios，Pythagoras＇Theorem）
（a） $\sin 20^{\circ}=\frac{B C}{12}$

$$
\begin{aligned}
B C & =12 \sin 20^{\circ} \\
& =4.1042
\end{aligned}
$$

$\therefore B D=6+4.1042$

$=10.1042$
$\approx 10.1 \mathrm{~m}$（ $\mathbf{3}$ sig．fig．）
（b）（i）$(A G)^{2}=(A N)^{2}+(G N)^{2}$

$$
12^{2}=5^{2}+(G N)^{2}(\because A N=E F)
$$

$$
(G N)^{2}=12^{2}-5^{2}
$$

$$
G N=\sqrt{119} \text { or }-\sqrt{119}(\text { rejected })
$$

$$
=10.908
$$

$$
\approx 10.9 \mathrm{~m} \text { (3 sig. fig.) }
$$

（ii） $\cos \angle G A N=\frac{5}{12}$

$$
\begin{aligned}
\angle G A N & =\cos ^{-1}\left(\frac{5}{12}\right) \\
& =65.375^{\circ}
\end{aligned}
$$

\therefore The angle through which the jib has rotated $=65.375^{\circ}-20^{\circ}$

$$
=45.375^{\circ}
$$

$$
\approx 45.4^{\circ}(1 \mathrm{~d} . \mathrm{p} .)
$$

4．Topic：Geometry（Geometrical Properties of Circles \＆Similarity）
（a）（i）$\angle B E C=\angle B A C$
（angle in the same segment）

$$
=33^{\circ}
$$

（ Δ in semi circle）

$$
\angle C A E=\angle B A E-\angle B A C
$$

$$
=90^{\circ}-33^{\circ}
$$

$$
=57^{\circ}
$$

$$
\begin{aligned}
& \angle B A C=33^{\circ} \\
& {[\text { from (a) (i)] }}
\end{aligned}
$$

$$
\therefore \angle E B C=\angle C A E
$$

$$
=\mathbf{5 7}^{\circ}
$$

（angle in the same segment）
（iii）$\angle C D E+\angle E B C=180^{\circ}$ （opp．$\angle \mathrm{s}$ of cyclic quad）

$$
\therefore \angle C D E=180^{\circ}-57^{\circ}
$$

$$
=123^{\circ}
$$

（b）（i）$\angle A F E=\angle D F C \quad($ Common $\angle)$ $\angle F A E=\angle F D C=57^{\circ}$
$\therefore \triangle F A E$ and $\triangle F D C$ are similar
（c）Since $\triangle F A E$ and $\triangle F D C$ are similar，

$$
\begin{aligned}
\frac{F A}{F D} & =\frac{F E}{F C} \\
\frac{A C+3}{4} & =\frac{8+4}{3} \\
3(A C+3) & =4(12) \\
3 A C & =39 \\
A C & =\mathbf{1 3} \mathbf{~ c m}
\end{aligned}
$$

Elementary Mathematics（4016／02）

5．Topics：Set Language and Notation，Matrices
（a）$\varepsilon=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$
$A=\{1,4,9,16\}$
$B=\{3,6,9,12,15\}$
（i）

（ii）$A^{\prime}=\{2,3,5,6,7,8,10,11,12,13,14,15$ $A^{\prime} \cap B=\{3,6,12,15\}$
（iii）$A \cup B=\{1,3,4,6,9,12,15,16\}$ $\mathrm{n}(A \cup B)=\mathbf{8}$

Integers in both A^{\prime} and B \rightarrow non－perfect squares and divisible by 3
（b）（i） $\mathbf{D}=\left(\begin{array}{ll}25 & 15 \\ 10 & 30\end{array}\right)$
All perfect squares and all integers divisible by 3 ．
（ii） $\mathbf{E}=5 \mathbf{C}+\mathbf{D}$
$=5\left(\begin{array}{ll}10 & 30 \\ 20 & 10\end{array}\right)+\left(\begin{array}{ll}25 & 15 \\ 10 & 30\end{array}\right)$
$=\left(\begin{array}{cc}50 & 150 \\ 100 & 50\end{array}\right)+\left(\begin{array}{ll}25 & 15 \\ 10 & 30\end{array}\right)$
$=\left(\begin{array}{cc}75 & 165 \\ 110 & 80\end{array}\right)$
（iii）Total number of adults and children carried by bus from Monday to Saturday．
（iv）（a） $\mathbf{F}=\mathbf{C}\binom{25}{15}$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$
$=\left(\begin{array}{ll}10 & 30 \\ 20 & 10\end{array}\right)\binom{25}{15}$
$=\binom{700}{650}$
（b） \mathbf{F} represents the total fare in cents collected from both adults and children on a weekday morning and weekday afternoon respectively．
（c） $\mathbf{G}=\frac{1}{100}\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{700}{650}$

$$
=\frac{1}{100}(1350)
$$

$$
=(\mathbf{1 3 . 5 0})
$$

（d） \mathbf{G} represents the total fare amount（in dollars）collected on a weekday．

Elementary Mathematics（4016／02）

6．Topic：Graphical Solution of Equations
（a）$y=\frac{1}{10}\left(60-x^{2}-\frac{80}{x}\right)$
When $x=6$ ，

$$
\begin{aligned}
p & =\frac{1}{10}\left(60-6^{2}-\frac{80}{6}\right) \\
& =\mathbf{1 . 0 7}(\mathbf{2} \mathbf{~ d . p .})
\end{aligned}
$$

（b）

（c）Values of x where $\frac{1}{10}\left(60-x^{2}-\frac{80}{x}\right)=2$ is obtained from x－coordinate of intersection points of the curve $y=\frac{1}{10}\left(60-x^{2}-\frac{80}{x}\right)$ and the line $y=2$ ．

From the graph， $\boldsymbol{x}=\mathbf{2 . 3 5}, 4.91$
（d）From the graph，gradient of tangent

$\frac{1}{10}\left(60-x^{2}-\frac{80}{x}\right)=2$
$10\left(60-x^{2}-\frac{x}{x}\right)=$
$x^{3}-40 x+80=0$
$=3.19$（ $\mathbf{3}$ sig．fig．）
（e）Largest value of $y=\mathbf{2 . 5 1}$ ，when $x=3.5$

AMaths students：

Check：$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{10}\left(-2 x+\frac{80}{x^{2}}\right)$
$\operatorname{Sub} x=1.5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3.26$

7．Topics：Trigonometry，Mensuration
（a）$\angle A O B=\frac{360^{\circ}}{5}$
Let the length of the perpendicular from O to $A B$ be x ．

$$
\begin{aligned}
\tan 36^{\circ} & =\frac{2}{x} \\
x & =\frac{2}{\tan 36^{\circ}} \\
& =2.7527 \\
& \approx \mathbf{2 . 7 5} \mathbf{~ c m ~ (3 ~ s i g . ~ f i g .) ~}
\end{aligned}
$$

（b）Radius of outer circle $=x+2$

$$
\begin{aligned}
& =2.7527+2 \\
& =4.7527 \\
& \approx 4.75 \mathrm{~cm}(3 \text { sig. fig. }) \text { (Shown) }
\end{aligned}
$$

（c）Total length of wire needed to make the ornament

$$
\begin{array}{ll}
=5(4)+5\left(\frac{1}{2}\right)(2 \pi)(2)+2 \pi(4.7527) & \\
=81.278 & +(5 \times \text { semides of pentagon }) \\
\approx \mathbf{8 1 . 3} \mathbf{~ c m}(\mathbf{3} \mathbf{~ s i g} . \text { fig. }) & \\
+ \text { Circumference of outer circle }
\end{array}
$$

（d）Area enclosed by the wire pentagon $=5\left(\frac{1}{2}\right)(2.7527)(4)$

$$
\begin{aligned}
& =27.527 \\
& \approx 27.5 \mathrm{~cm}^{2}(\mathbf{3} \text { sig. fig. })
\end{aligned}
$$

（e）Area of the shaded region on the diagram

$$
\begin{array}{ll}
=\left[\pi(4.7527)^{2}-27.527-5\left(\frac{1}{2}\right)(\pi)(2)^{2}\right] \div 5 & \\
=(12.019) \div 5 & \text { [Area of outer circle } \\
\left.\approx \mathbf{2 . 4 0} \mathbf{c m}^{\mathbf{2}} \mathbf{(3} \mathbf{~ s i g} . \text { fig. }\right) &
\end{array}
$$

Area of 5 triangles of height $x \mathrm{~cm}$ and base 4 cm

8．Topic：Trigonometry（Cosine Rule，Sine Rule，Bearings，Angle of Elevation）
（a）（i）$(B C)^{2}=(A B)^{2}+(A C)^{2}-2(A B)(A C) \cos \angle B A C$
$=550^{2}+645^{2}-2(550)(645) \cos 38^{\circ}$
$B C=\sqrt{159431.3703}$
$=399.28$
$\approx 399 \mathrm{~m}$（ $\mathbf{3}$ sig．fig．）

Cosine Rule
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
（ii）

$$
\begin{aligned}
& \frac{\sin \angle A C B}{A B}=\frac{\sin \angle B A C}{B C} \\
& \frac{\sin \angle A C B}{550}=\frac{\sin 38^{\circ}}{399.28} \\
& \sin \angle A C B=0.84806 \\
& \angle A C B=58.00^{\circ} \\
& \approx 58.0^{\circ} \text { (1 d.p.) } \\
& \angle A B C=180^{\circ}-38^{\circ}-58.0^{\circ} \\
& =84^{\circ} \\
& \text { Bearing of } C \text { from } B=360^{\circ}-\left(180^{\circ}-62^{\circ}\right)-84^{\circ}
\end{aligned}
$$

（iii）
$=158^{\circ}$
（b）（i） $\tan 7^{\circ}=\frac{A D}{645}$

$$
\begin{aligned}
A D & =79.196 \\
& \approx 79.2 \mathbf{~ m}(\mathbf{3} \text { sig. fig. })
\end{aligned}
$$

 of D from C

（ii）Let x be the shortest distance from A to $B C$

$$
\begin{aligned}
\frac{1}{2}(x)(B C) & =\text { Area of } \triangle A B C \\
\frac{1}{2}(x)(399.28) & =\frac{1}{2}(550)(645) \sin 38^{\circ} \\
x & =546.999
\end{aligned}
$$

Max \angle of elevation occurs at min distance from A to $B C$

Let θ be the greatest possible angle of elevation of D from a point on $B C$ ．

$$
\begin{aligned}
\tan \theta & =\frac{79.196}{546.999} \\
\theta & =8.238 \\
& \left.\approx \mathbf{8 . 2 ^ { \circ }} \mathbf{(1 \mathbf { d } . p .}\right)
\end{aligned}
$$

9．Topics：Pythagoras＇Theorem，
Solution to Quadratic Equation
（a）$A T=T P=x$

$$
S B=S Q=7
$$

$\therefore S T=17-A T-S B$
$=17-x-7$
$=(10-x) \mathrm{cm}$（Shown）
（b）（i）$P Q=(x+7) \mathrm{cm}$
（ii）$Q R=(7-\boldsymbol{x}) \mathbf{c m}$
（c）By Pythagoras＇Theorem，

$$
\begin{aligned}
(P Q)^{2} & =(P R)^{2}+(Q R)^{2} \\
(x+7)^{2} & =(S T)^{2}+(7-x)^{2} \\
x^{2}+14 x+49 & =(10-x)^{2}+49-14 x+x^{2} \\
x^{2}+14 x+49 & =100-20 x+x^{2}+49-14 x+x^{2} \\
x^{2}-48 x+100 & =0 \text { (Shown) }
\end{aligned}
$$

（d）$a=1, b=-48, c=100$

$$
\begin{array}{rlrl}
x & =\frac{48 \pm \sqrt{(-48)^{2}-4(1)(100)}}{2(1)} \\
& =\frac{48 \pm \sqrt{1904}}{2} & & \\
& =45.817 \quad \text { or } & 2.182 \\
& \approx \mathbf{4 5 . 8 2} & & \mathbf{2 . 1 8} \text { (2 d.p.) }
\end{array}
$$

（e）When $x=2.182$ ，（45．82 rejected） \qquad
Diameter of smaller cylinder $=2(2.182)$
$=4.364 \mathrm{~cm}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$
$=43.64 \mathrm{~mm}$
$\approx 44 \mathrm{~mm}$（nearest millimeter）

Elementary Mathematics (4016/02)

10. Topics: Statistics, Simple Probability
(a) (i)

Scores	4	5	6	7	8	10
Frequency	2	5	11	8	3	1

(ii) (a) Mean score $=\frac{\Sigma f x}{\Sigma f}$

$$
\begin{aligned}
& =\frac{4(2)+5(5)+6(11)+7(8)+8(3)+10(1)}{30} \\
& =\frac{189}{30} \\
& =6.3
\end{aligned}
$$

(b) Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\sum f x}{\Sigma f}\right)^{2}}$
$=$
$\sqrt{\frac{2(4)^{2}+5(5)^{2}+11(6)^{2}+8(7)^{2}+3(8)^{2}+1(10)^{2}}{30}-(6.3)^{2}}$
$=1.2423$
$\approx \mathbf{1 . 2 4}$ (3 sig. fig.) $\quad \frac{\sum f x}{\sum f}=6.3$ from (ii)(a)
(b) (i)

Check: Sum of probabilities of

(ii) (a) P (Ann and Ben both choose a chocolate with hard centre)

$=\frac{5}{9} \times \frac{4}{8}$	P(Ann gets hard centre) AND
$=\frac{5}{18}$	P(Ben gets hard centre)

(b) P (Ben chooses a chocolate with soft centre)

$=\frac{5}{9}\left(\frac{4}{8}\right)+\frac{4}{9}\left(\frac{3}{8}\right)$	P(Ann gets hard centre AND Ben gets
$=\frac{4}{9}$	soft centre) OR P(Ann gets soft centre
AND Ben gets soft centre)	

(c) P (One of them chooses a chocolate with hard centre and the other chooses one with soft centre)

$$
\begin{aligned}
& =\frac{5}{9}\left(\frac{4}{8}\right)+\frac{4}{9}\left(\frac{5}{8}\right) \\
& =\frac{5}{9}
\end{aligned}
$$

$\mathrm{P}($ Ann gets hard centre AND Ben gets soft centre) OR P(Ann gets soft centre

