Image: Complex by

 Image: Description of the second seco

4016/02 October/November 2009

> $100\% \rightarrow 2007$ time 95 % $\rightarrow 2008$ time

1. Topics: Arithmetic (Time, Speed and Percentages) (a) (i) $1\frac{1}{2}$ hours = $1\frac{1}{2} \times 60$ = 90 minutes Time he spends warming up = $\frac{90}{12} \times 3$ = 22.5 minutes (ii) % of the $1\frac{1}{2}$ hours at the sports centre he spends running $=\frac{7}{2+2+7} \times 100\%$ $=58\frac{1}{2}\%$ Speed = $\frac{\text{Distance travelled}}{\text{Distance travelled}}$ (b) (i) Speed = $\frac{3000 \text{ m}}{9\frac{1}{2} \text{ minutes}}$ Time taken $= \frac{3}{\frac{9^{\frac{1}{2}}}{2}}$ km/h $= 18\frac{18}{19}$ km/h $100\% \rightarrow 2008$ time (ii) His best time in 2009 = $90\% \times 9\frac{1}{2}$ minutes $90\% \rightarrow 2009$ time

(iii) His best time in 2007 = $\frac{9.5}{95} \times 100$

2. Topic: Algebra (Factorisation, Formulae) (a) (i) $25 - p^2 = 5^2 - p^2$ $a^2 - b^2 = (a + b)(a - b)$ = (5+p)(5-p)(ii) $\frac{25-p^2}{15+3p} = \frac{(5+p)(5-p)}{3(5+p)}$ Using answer from part (i) $=\frac{5-p}{2}$ (b) $\frac{3}{(x+2)^2} - \frac{4}{x+2} = \frac{3-4(x+2)}{(x+2)^2}$ $= \frac{3-4x-8}{(x+2)^2}$ $=\frac{-4x-5}{(x+2)^2}$ (c) $v^2 = u^2 - 2gh$ (i) When u = 30, g = 9.8 and h = 24, $v^2 = 30^2 - 2(9.8)(24)$ = 900 - 470.4 $v^2 = 429.6$ $v = \pm \sqrt{429.6}$ $= \pm 20.726$ $\approx \pm 20.7$ (3 sig. fig.) (ii) $v^2 = u^2 - 2gh$ $u^2 = v^2 + 2gh$ $u = \pm \sqrt{v^2 + 2gh}$

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment
+65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition twitter.com/MissLoi

= 8.55 minutes

= 8 minutes 33 seconds

= 10 minutes 0 seconds

Unauthorized copying, resale or distribution prohibited. Copyright © 2009 φ exampaper.com.g. All rights reserved.

3. Topic: Trigonometry (Trigonometrical Ratios, Pythagoras' Theorem)

or tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatmen

$$\mathbf{E} = 5\mathbf{C} + \mathbf{D}$$

$$= 5\binom{10}{20} \frac{30}{10} + \binom{25}{10} \frac{15}{30}$$

$$= \binom{50}{100} \frac{150}{50} + \binom{25}{10} \frac{15}{30}$$

$$= \binom{75}{110} \frac{165}{80}$$

(ii)

(

(iii) Total number of adults and children carried by bus from Monday to Saturday.

iv) (a)
$$\mathbf{F} = \mathbf{C} \begin{pmatrix} 25\\15 \end{pmatrix}$$

= $\begin{pmatrix} 10 & 30\\20 & 10 \end{pmatrix} \begin{pmatrix} 25\\15 \end{pmatrix}$
= $\begin{pmatrix} 700\\650 \end{pmatrix}$

(b) **F** represents the total fare in cents collected from both adults and children on a weekday morning and weekday afternoon respectively.

(c)
$$\mathbf{G} = \frac{1}{100} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 700 \\ 650 \end{pmatrix}$$

= $\frac{1}{100} \begin{pmatrix} 1350 \end{pmatrix}$
= **(13.50)**

(d) **G** represents the total fare amount (in dollars) collected on a weekday.

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition T twitter.com/MissLoi

Unauthorized copying, resale or distribution prohibited. Copyright © 2009 o exampaper.com.sg. All rights reserved.

(a)
$$y = \frac{1}{10} \left(60 - x^2 - \frac{80}{x} \right)$$

When $x = 6$,
 $p = \frac{1}{10} \left(60 - 6^2 - \frac{80}{6} \right)$
 $= 1.07 (2 \text{ d.p.})$

(b)

7. Topics: Trigonometry, Mensuration

(a)
$$\angle AOB = \frac{360^{\circ}}{5}$$

= 72°

Let the length of the perpendicular from O to AB be x.

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition twitter.com/MissLoi

Unauthorized copying, resale or distribution prohibited. Copyright © 2009 o exampaper.com.sg. All rights reserved.

Topic: Trigonometry (Cosine Rule, Sine Rule, Bearings, Angle of Elevation)	
(a) (i) $(BC)^2 = (AB)^2 + (AC)^2 - 2(AB)(AC)\cos \angle BAC$ = $550^2 + 645^2 - 2(550)(645)\cos 38^\circ$	
$BC = \sqrt{159431.3703} \\ = 399.28$	Cosine Rule: $c^2 = a^2 + b^2 - 2ab \cos C$
\approx 399 m (3 sig. fig.)	
(ii) $\frac{\sin \angle ACB}{AB} = \frac{\sin \angle BAC}{BC}$ Sine I $\frac{\sin \angle ACB}{550} = \frac{\sin 38^{\circ}}{399.28}$ $\sin \angle ACB = 0.84806$	Rule: = $\frac{\sin B}{b} = \frac{\sin C}{c}$
$\angle ACB = 58.00^{\circ}$	
≈ 58.0° (1 d.p.)	
(iii) $\angle ABC = 180^\circ - 38^\circ - 58.0^\circ$ = 84°	
Bearing of C from $B = 360^\circ - (180^\circ - 62^\circ) - 84^\circ$ = 158° North	
(b) (i) $\tan 7^\circ = \frac{AD}{645}$ AD = 79.196	
≈ 79.2 m (3 sig. fig.) $B \bigvee_{158^\circ}^{158^\circ}$	
D Angle of elevation of D from C C A	

8.

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg ff facebook.com/JossSticksTuition twitter.com/MissLoi

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment

Unauthorized copying, resale or distribution prohibited. Copyright © 2009 @ exampaper.com.sg. All rights reserved.

10. Topics: Statistics, Simple Probability

