Elementary Mathematics（4016／01）

2．Topic：Arithmetic（Percentages）

$$
\begin{aligned}
100 \% & \rightarrow \$ 48 & & \\
1 \% & \rightarrow \frac{\$ 48}{100} & & \text { Selling price } \\
235 \% & \rightarrow \frac{\$ 48}{100} \times 235 & & =\text { Cost price }(100 \%)+\text { Profit }(135 \%) \\
& =\$ 112.80 & & =235 \% \times \text { Cost price }
\end{aligned}
$$

$$
\text { Answer } \quad \$ \quad 112.80
$$

3．Topic：Statistics（Frequency Table \＆Pie Chart）
（a）Modal colour＝Blue

ELEMENTARY MATHEMATICS

Paper 1 Suggested Solutions
October／November 2009

1．Topic：Algebra
（a） $20 x y-5 y=\mathbf{5 y}(\mathbf{4 x}-\mathbf{1})$
（b） $4 x-4(x+3)=4 x-4 x-12$

$$
=-12
$$

Answer \qquad［1］
（b） ［1］
4016／01

（b）Angle representing the colour green $=\frac{5}{9+5+1+6+3} \times 360^{\circ}$

```
 of sector in pie chart \(\propto\) its given data
```

$=75^{\circ}$

Answer \qquad ［1］

4．Topic：Arithmetic（Percentages \＆Fractions）
（a）$\frac{17}{24} \times 100 \%=\mathbf{7 0} \frac{5}{6} \%$
（b）Fraction of candidates who were not awarded an A or B grade

$$
=1-\frac{1}{3}-\frac{1}{4}
$$

$$
=\frac{5}{12}
$$

Answer

5．Topic：Algebra（Indices）
（a） $2^{p} \times 5=40$
$2^{p}=\frac{40}{5}$
$2^{p}=8$
$2^{p}=2^{3}$
$\therefore p=3$

Elementary Mathematics（4016／01）

（b） $\begin{aligned} 1 \div x^{-4} & =1 \div \frac{1}{x^{4}} \\ & =1 \times \frac{x^{4}}{1} \\ & =x^{4}\end{aligned}$
Answer
（a）$p=$ \qquad
（b） ［1］
$[1]$

6．Topic：Angle Properties of Polygon
（a）$x^{\circ}+\angle E D C=180^{\circ}$
（int．$\angle \mathrm{s}, A E / / D C$ ）

$$
\begin{aligned}
\therefore x & =180-130 \\
& =\mathbf{5 0}
\end{aligned}
$$

（b）

$$
\begin{aligned}
\angle E A B & =180^{\circ}-x^{\circ} \\
& =130^{\circ} \quad(\text { int. } \angle \mathrm{s})
\end{aligned}
$$

Sum of interior $\angle \mathrm{s}=(5-2) \times 180^{\circ}$

$$
x^{\circ}+\angle E A B+y^{\circ}+80^{\circ}+130^{\circ}=3 \times 180^{\circ}
$$

Sum of int．$\angle \mathrm{s}$ of an n－sided polygon $=$ $(n-2) \times 180^{\circ}$

$$
50^{\circ}+130^{\circ}+y^{\circ}+80^{\circ}+130^{\circ}=540^{\circ}
$$

$$
(n-2) \times 180^{\circ}
$$

$$
y=150
$$

Answer

（a）$x=$ \qquad
（b）$y=$ \qquad ［1］ ［1］

7．Topic：Linear Inequalities

$$
\begin{aligned}
-2 & <2 x-5<7 \\
-2+5 & <2 x<7+5 \\
\therefore \frac{3}{2} & <x<6
\end{aligned}
$$

$$
\text { Answer (a) } \frac{3}{2}<x<6
$$

8．Topic：Arithmetic（Compound Interest）

$$
\begin{array}{rlr}
\text { opic: Arithmetic (Compound Interest) } & \begin{array}{l}
\text { Given in formula sheet } \\
\text { Total amount }
\end{array}=5000\left(1+\frac{4.8}{100}\right)^{6} & \begin{array}{l}
\text { (compound interest): } \\
\\
\\
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
\end{array} \\
\therefore \text { Interest } & =\$ 6624.265-\$ 5000 & \\
& =\$ 1624.265 & \begin{array}{l}
\text { Total interest } \\
\text { = Total amt. - Principal amt. }
\end{array} \\
& \approx \mathbf{1 6 2 4 . 2 7} \text { (2 d.p.) } &
\end{array}
$$

9．Topics：Trigonometry and Mensuration
（a）Area of $\triangle A B C=\frac{1}{2} a b \sin c$

$$
\begin{aligned}
& =\frac{1}{2}(7.43)(7.43) \sin 38^{\circ} \\
& =16.993 \\
& \approx \mathbf{1 7 . 0} \mathbf{~ c m}^{2} \text { (3 sig. fig.) }
\end{aligned}
$$

Elementary Mathematics（4016／01）

（b）Volume of the prism $=$ Base area \times height

$$
=\text { Area of } \triangle A B C \times 20
$$

$$
=16.993 \times 20
$$

$$
=339.87
$$

$\approx 340 \mathrm{~cm}^{2}$（3 sig．fig．）
Answer \qquad cm^{2}［1］
（b） \qquad $\mathrm{cm}^{2} \quad$［1］
10．Topic：Number Patterns
（a） 1 st term $=38$

$$
2^{\text {nd }} \text { term }=38-7
$$

$$
=31
$$

$$
3^{\text {rd }} \text { term }=31-7
$$

$$
=24
$$

（b） $\mathrm{T}_{1}=38$
$\mathrm{T}_{2}: 31=38-7$
$\mathrm{T}_{3}: 24=38-7-7$
$\mathrm{T}_{n}: 38-7(n-1)=45-7 n$
$n^{\text {th }}$ term $=\mathbf{4 5}-\mathbf{7 n}$

Answer
 ［1］

11．Topic：Arithmetic（Application of Mathematics in Practical Situations）
Small tin： $415 \mathrm{~g} \rightarrow \$ 1.04$

$$
\begin{aligned}
1 \mathrm{~g} & \rightarrow \$ \frac{1.04}{415} \\
& =\$ 0.002506 / \mathrm{g} \\
& \approx \$ 0.00251 / \mathrm{g}(3 \text { sig. fig. })
\end{aligned}
$$

Large tin： $815 \mathrm{~g} \rightarrow \$ 1.98$

$$
\begin{aligned}
1 \mathrm{~g} & \rightarrow \$ \frac{1.98}{815} \\
& =\$ 0.002429 / \mathrm{g} \\
& \approx \$ 0.00243 / \mathrm{g}(3 \text { sig. fig. })
\end{aligned}
$$

\therefore the large tin gives better value because it costs less per gram．
Answer The large tin gives better value

12．Topic：Kinematics

（a）Acceleration during the $1^{\text {st }} 40$ seconds $=\frac{24}{40} \quad$ Acceleration $=\frac{\text { Speed }}{\text { Time }}$

$$
=0.6 \mathrm{~m} / \mathrm{s}^{2}
$$

（b）Total distance travelled $=$ Total area under the graph

$$
\begin{align*}
& =\frac{1}{2}(60)(24) \\
& =\mathbf{7 2 0} \mathbf{~ m} \tag{1}
\end{align*}
$$

Answer \qquad
（a） \qquad $\mathrm{m} / \mathrm{s}^{2}$ ［1］

Elementary Mathematics（4016／01）

13．Topic：Volumes of Similar Figures
（a）Let w be the width of the prism．
Let $v_{1}=$ volume of water when $d=12$
and $v_{2}=$ volume of water when $d=24 \mathrm{~cm}$
$\frac{v_{1}}{v_{2}}=\frac{(\text { Base area when } d=12) \times w}{(\text { Base area when } d=24) \times w}$
$\frac{v_{1}}{v_{2}}=\left(\frac{12}{24}\right)^{2} \times \frac{w}{w}$
$v_{1}=\frac{1}{4} v_{2}$
\therefore since v_{2} takes 8 seconds，v_{1} takes 2 seconds
$\therefore \boldsymbol{t}=\mathbf{2}$ when $d=12$

Answer（a）

（b）

14．Topic：Mensuration（Surface area）

```
Surface area of hemisphere
\(=\frac{1}{2} \times\) surface area of sphere (from formula sheet)
\(\frac{1}{2}\left(4 \pi r^{2}\right)=2 \pi r^{2}\)
Surface area of the toy \(=2 \pi r^{2}+\pi r l\)
\[
\begin{aligned}
& =2 \pi(2.8)^{2}+\pi(2.8)(7.2) \\
& \approx 112.59 \\
& \left.\approx \mathbf{1 1 3} \mathbf{~ c m}^{\mathbf{2}} \mathbf{( \mathbf { 3 } \mathbf { ~ s i g } . ~ f i g .}\right)
\end{aligned}
\]
```

Curved surface area of a cone
$=\pi r l$ (from formula sheet)

Answer \qquad 113 cm^{2}

15．Topic：Areas \＆Volumes of Similar Figures
（a）（i）$\frac{v_{S}}{v_{\mathrm{L}}}=\left(\frac{R_{S}}{R_{\mathrm{L}}}\right)^{3}$

$$
\begin{aligned}
\frac{640}{1250} & =\left(\frac{R_{S}}{R_{\mathrm{L}}}\right)^{3} \\
\therefore \frac{R_{S}}{R_{\mathrm{L}}} & =\sqrt[3]{\frac{640}{1250}} \\
& =\frac{4}{5}
\end{aligned}
$$

Ratio of the smaller radius to the larger radius $=\mathbf{4 : 5}$
（ii）$\frac{A_{S}}{A_{\mathrm{L}}}=\left(\frac{R_{S}}{R_{\mathrm{L}}}\right)^{2}$
$=\left(\frac{4}{5}\right)^{2}$
$=\frac{16}{25}$
\therefore Ratio of the surface area to the larger surface area $=\mathbf{1 6}: \mathbf{2 5}$

Elementary Mathematics（4016／01）

（b）$\frac{M_{S}}{M_{\mathrm{L}}}=\left(\frac{R_{S}}{R_{L}}\right)^{3}$

$$
\begin{aligned}
\frac{M_{S}}{25} & =\left(\frac{4}{5}\right)^{3} \\
M_{\mathrm{S}} & =\frac{64}{125} \times 25 \\
& =12.8 \mathrm{~kg}
\end{aligned}
$$

\therefore Mass of the smaller sphere $=\mathbf{1 2 . 8} \mathbf{~ k g}$

6．Topic：Geometry
（a）（i）

$$
\angle D A C=\angle A C D=60^{\circ}
$$

$\therefore \triangle D A C$ is an equilateral $\Delta \Rightarrow$ Length of $A C=\mathbf{8} \mathbf{~ c m}$
（ii）Since $\angle A C D=60^{\circ}, \angle A C B=130^{\circ}-60^{\circ}$

$$
=70^{\circ}
$$

$$
\therefore \angle A B C=180^{\circ}-2\left(70^{\circ}\right)
$$

$$
=40^{\circ}(\operatorname{sum} \text { of } \angle \mathrm{s} \text { in } \Delta)
$$

$$
\text { Answer(a)(i) } A C=8 \quad \mathrm{~cm} \quad[1
$$

（ii）$\angle A B C=$ \qquad ［1］
（b）（i）$\angle P O T=2 \times \angle P Q O$（ \angle at centre $=2 \times \angle \mathrm{s}$ at circumference $)$

$$
=2\left(32^{\circ}\right)
$$

$$
=64^{\circ}
$$

$$
\text { (ii) } \begin{aligned}
\angle O P T & =90^{\circ} \quad(\tan \perp \text { radius }) \\
\therefore \angle O T P & =180^{\circ}-90^{\circ}-64^{\circ} \\
& =\mathbf{2 6}^{\circ} \quad(\text { sum of } \angle \mathrm{s} \text { in } \Delta)
\end{aligned}
$$

$$
\operatorname{Answer}(\mathrm{b})(\mathrm{i}) \angle P O T=\quad 64^{\circ}
$$

（ii）$\angle O T P=$ \qquad

17．Topic：Algebra
（a）（i） $2 x^{2}+k x-15=0$ \qquad
$\operatorname{Sub} x=3$ ，
$2(3)^{2}+3 k-15=0$
$18+3 k-15=0$
$3 k=-3$
$k=-1$
(ii) $\operatorname{Sub} k=-1$ into (1),

$$
\begin{aligned}
& 2 x^{2}-x-15=0 \\
& (2 x+5)(x-3)=0 \\
& 2 x+5=0 \quad \text { or } \quad x-3=0 \\
& x=-\frac{5}{2} \quad x=3 \text { (given) } \\
& =-2.5
\end{aligned}
$$

(b) $6 p^{2}-3 p q-10 a p+5 a=3 p(2 p-q)-5 a(2 p-q)$

$$
=(2 p-q)(3 p-5 a)
$$

Answer (a)(i) $k=$ \qquad
(ii) $\quad x=-2.5$
(b) $(2 p-q)(3 p-5 a)$ [2]
18. Topic: Factors and Multiples
(a) $150=2 \times 75$

$$
\begin{aligned}
& =2 \times 3 \times 25 \\
& =2 \times 3 \times 5^{2}
\end{aligned}
$$

(b) $150=2 \times 3 \times 5^{2}$
$48=2^{4} \times 3$
$\mathrm{HCF}=2 \times 3$
$=6$
(c) LCM of 48 and $150=2^{4} \times 3 \times 5^{2}$

Least number of chocolate bars he could have bought $=\frac{1200}{150}$

$$
=\mathbf{8}
$$

\qquad
(b) \qquad
(c)
 [2]
19. Topics: Approximation \& Estimation, Trigonometry
(a) (i) $\frac{494.6}{56.33 \times 98.12}=\frac{494.6}{5527.0996}$
$=0.08948635556$
(ii) $0.08948635556 \approx \mathbf{0 . 1}$ (1 d.p.)
(b) $\tan 30^{\circ}=\frac{A B}{280}$
$A B=280 \tan 30^{\circ}$
$=161.65$
$\approx 162 \mathrm{~m}$ (3 sig. fig.)

Answer m [2]
(b) \qquad 162

Elementary Mathematics（4016／01）

20．Topic：Statistics（Cumulative Frequency）

（a）Median mark $=50^{\text {th }}$ percentile of 800 students Median mark
（b）Interquartile range $=$ Upper quartile - Lower quartile

$$
\begin{aligned}
& =65-44 \\
& =21
\end{aligned}
$$

（c）Number of students who are awarded a grade $\mathrm{A}=800-720$
$=80$
（a）
（b）
（c） \qquad

21．Topic：Standard Form
（a） $1.32 \times 10^{9}-832 \times 10^{6}=10^{6}\left[1.32 \times 10^{3}-832\right]$

$$
\begin{aligned}
& =10^{6}[1320-832] \\
& =488 \times 10^{6} \\
& =\mathbf{4 . 8 8} \times \mathbf{1 0}^{\mathbf{8}}
\end{aligned}
$$

（b）Average number of per square kilometer living in Africa $=\frac{832 \times 10^{6}}{26.6 \times 10^{6}}$
$=31.3$ people per sq． $\mathbf{k m}$
（c）$\frac{\text { Number of people living in Singapore }}{\text { Number of people living in China }}=\frac{4.48 \times 10^{6}}{1.32 \times 10^{9}}$

$$
\begin{aligned}
& =\frac{4.48}{1.32 \times 10^{3}} \\
& =\frac{4.48}{1320} \\
& =\frac{14}{4125}
\end{aligned}
$$

Ratio of no．of people living in Singapore ：no．of people living in China $=14: 4125$
$=1: 294 \frac{9}{14}$
Answer
（a） 4.88×10^{8}
（b） \qquad ［1］

Elementary Mathematics (4016/01)

22. Topics: Mensuration and Trigonometry
(a) Length of the major arc $A B=r \theta$

$$
=10(2 \pi-2.3)
$$

$=39.83$
$\approx 39.8 \mathrm{~cm}$ (3 sig. fig.)
(b) $\quad \sin x=\frac{1}{2}$
$\because \sin \frac{\pi}{6}=\frac{1}{2}$
and $\quad \sin \left(\pi-\frac{\pi}{6}\right)=\sin \frac{\pi}{6}=\frac{1}{2}$
$\therefore x=\frac{\pi}{6}$ or $\quad \frac{5 \pi}{6}$
$=0.5235$ or 2.617
≈ 0.524 or 2.62 (3 sig. fig.)
θ must be in radians

Answer
$\sin \theta=\sin (\pi-\theta)$
(a) 39.8
cm [2]
(b) $x=0.524$ or 2.62
fig.)

]
23. Topics: Angle Properties of Polygons and Simultaneous Equations
(a)

$100^{\circ}+129^{\circ}+3 y^{\circ}+x^{\circ}=360^{\circ}$ (int. $\angle \mathrm{s}$ of quadrilaterals)
$3 y+x=131$
(b) Sub (1) into (2):

$$
\begin{aligned}
3 y+100-2 y & =131 \\
y & =31 \\
\text { Sub } y=31 \text { into }(1), x & =100-2(31) \\
& =38 \\
\therefore \boldsymbol{x}=\mathbf{3 8} & \text { and } \boldsymbol{y}=\mathbf{3 1}
\end{aligned}
$$

Answer

Elementary Mathematics（4016／01）

24．Topic：Congruency and Similarity
（a）

（b）

Answer（a）In triangles $A B X$ and $D C X$ ，

$A X=D X$（given）				
$B X=C X$（given）				
$\angle A X B=\angle C X D$（vertically opp．$\angle$ s）				
\therefore By SAS property，$\triangle A B X$ and $\triangle D C X$ are congruent．［2］				
）Triangles	$A B C$	and	DCB	
r Triangles	$A B D$	and	$D C A$	［1］
）Triangles	$A D X$	and	$C B X$	［1］

25．Topic：Coordinate Geometry
（a）Gradient of $A B=\frac{3-1}{6-0}$
Gradient of straight line passing through $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$
$=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{1}{3}$
（b）Equation of $A B: y=\frac{1}{3} x+c$
Equation of straight line with gradient $m \& y$－intercept c ：

Elementary Mathematics（4016／01）

（c）Area of $\triangle A B C=\frac{1}{2} \times 3 \times 6$

$$
=9 \text { units }^{2}
$$

（d）Two possible points of \boldsymbol{D} are $(-6,-4),(6,0)$ or $(6,6)($ Any two）

Expressing a vector in terms of its position vectors
$\overrightarrow{L P}=\overrightarrow{O P}-\overrightarrow{O L}$

Answer

（b）
$y=\frac{1}{3} x+1$
（c） 9 unit 2［1］
（d）
$\left.\frac{(-6,-4)}{(6}, \frac{0)}{(6}, 6\right)$

26．Topic：Vectors in Two Dimensions
（a） $\overrightarrow{B A}=\overrightarrow{B O}+\overrightarrow{O A}$

$$
=-6 \mathbf{b}+6 \mathbf{a}
$$

（i） $\overrightarrow{B M}=\frac{1}{3} \overrightarrow{B A}$

$$
\begin{aligned}
& =\frac{1}{3}[-6 \mathbf{b}+6 \mathbf{a}] \\
& =-2 \mathbf{b}+2 \mathbf{a} \\
& =2 \mathbf{a}-2 \mathbf{b}
\end{aligned}
$$

（ii） $\overrightarrow{O M}=\overrightarrow{O B}+\overrightarrow{B M}$

$$
=6 \mathbf{b}+2 \mathbf{a}-2 \mathbf{b}
$$

$$
=2 \mathbf{a}+4 \mathbf{b}
$$

$\overrightarrow{M L}=\overrightarrow{M O}+\overrightarrow{O L}$

$$
\begin{aligned}
& =-2 \mathbf{a}-4 \mathbf{b}+3 \mathbf{a} \\
& =\mathbf{a}-4 \mathbf{b}
\end{aligned}
$$

（b）$\quad \overrightarrow{L P}=3 \overrightarrow{L M}$
$\overrightarrow{O P}-\overrightarrow{O L}=3(4 \mathbf{b}-\mathbf{a})$

$$
\stackrel{\rightharpoonup}{O P}=12 \mathbf{b}-3 \mathbf{a}+3 \mathbf{a}
$$

$$
=12 \mathbf{b}
$$

（c）

$$
\begin{aligned}
\stackrel{\rightharpoonup}{O P} & =12 \mathbf{b} \\
& =2(6 \mathbf{b}) \\
& =2 \overrightarrow{O B}
\end{aligned}
$$

$\overrightarrow{A B}=k \stackrel{\rightharpoonup}{B C}$
$\Rightarrow A, B$ are collinear （straight line）
$\therefore O, B$ and P are collinear and $O P$ is twice of $O B$ ．

Elementary Mathematics（4016／01）

（d）

Since $L M B N$ is a parallelogram，

$$
\begin{aligned}
\overrightarrow{N B} & =\overrightarrow{L M} & \overrightarrow{N B} \text { and } \overrightarrow{L M} \text { are equal vectors } \\
\overrightarrow{O B}-\overrightarrow{O N} & =4 \mathbf{b}-\mathbf{a} & \Rightarrow \text { same direction and magnitude } \\
\overrightarrow{O N} & =\overrightarrow{O B}-4 \mathbf{b}+\mathbf{a} & \\
& =6 \mathbf{b}-4 \mathbf{b}+\mathbf{a} & \\
& =2 \mathbf{b}+\mathbf{a} & \\
& =\mathbf{a}+2 \mathbf{b} &
\end{aligned}
$$

Answer（a）（i） $\overrightarrow{B M}=\quad 2 \mathbf{a}-2 \mathbf{b}$
（ii） $\overrightarrow{O M}=2 \mathbf{a}+4 \mathbf{b}$［1］
（iii） $\overrightarrow{M L}=\frac{\mathbf{a}-4 \mathbf{b}}{[1]}$
（b）$\quad \overrightarrow{O P}=12 b$
（c）O, B and P are collinear，
（d）$\frac{O P \text { is twice of } O B \text { ．}}{\overrightarrow{O N}=\mathbf{a}+2 \mathbf{b}}$

