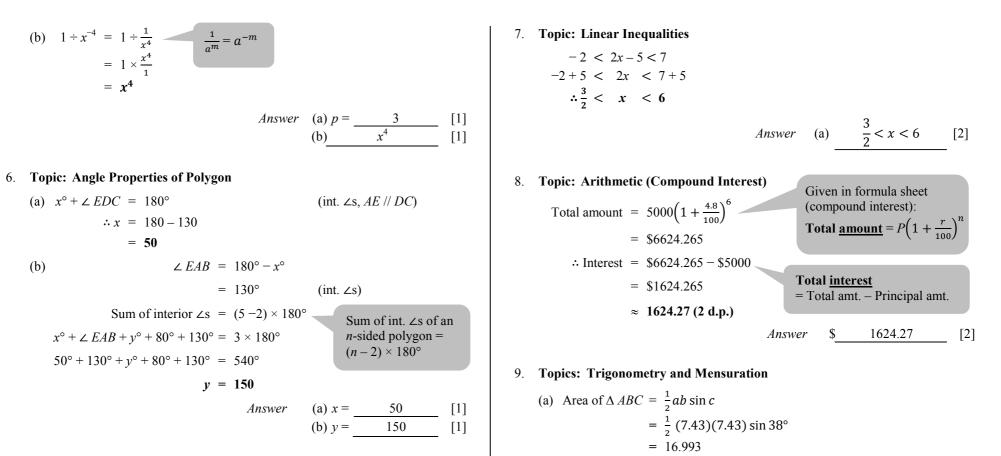
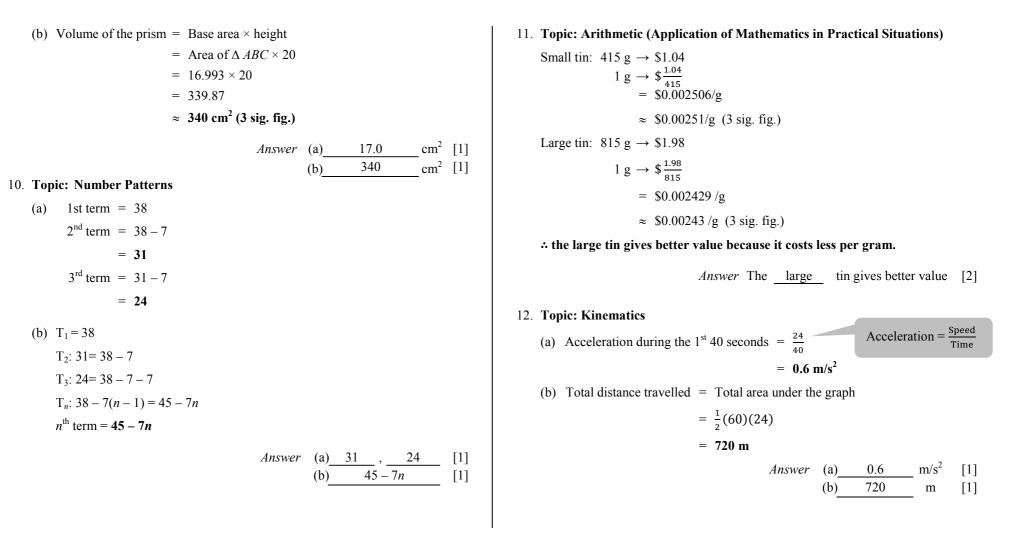

Complete by **Joss Sticks** www.exampaper.com.sg


For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition to twitter.com/MissLoi

Unauthorized copying, resale or distribution prohibited. Copyright © 2009 • exampaper.com.sg. All rights reserved.

GCE 'O' Level October/November 2009 Suggested Solutions

Elementary Mathematics (4016/01) version 1.1



 \approx 17.0 cm² (3 sig. fig.)

Elementary Mathematics (4016/01) version 1.1

紙

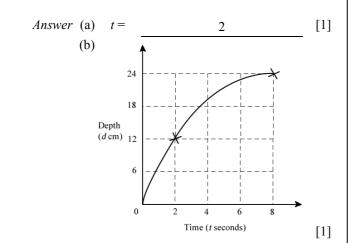
113

 cm^2

[1]

13. Topic: Volumes of Similar Figures

- (a) Let *w* be the width of the prism.
 - Let v_1 = volume of water when d = 12


and
$$v_2$$
 = volume of water when $d = 24$ cm

$$\frac{v_1}{v_2} = \frac{(\text{Base area when } d=12) \times w}{(\text{Base area when } d=24) \times w}$$
$$v_1 = (12)^2 \times w$$

w

$$\frac{1}{v_2} = \left(\frac{1}{24}\right) \times v_1 = \frac{1}{4}v_2$$

 $\therefore \text{ since } v_2 \text{ takes } 8 \text{ seconds, } v_1 \text{ takes } 2 \text{ seconds}$ $\therefore t = 2 \text{ when } d = 12$

14. Topic: Mensuration (Surface area)

Surface area of hemisphere $= \frac{1}{2} \times \text{surface area of sphere (from formula sheet)} = \frac{1}{2} (4\pi r^2) = 2\pi r^2$ Curved surface area of a cone $= \pi r l \text{ (from formula sheet)}$ Surface area of the toy $= 2\pi r^2 + \pi r l$ $= 2\pi (2.8)^2 + \pi (2.8)(7.2)$ ≈ 112.59 $\approx 113 \text{ cm}^2 \text{ (3 sig. fig.)}$

Answer

15. Topic: Areas & Volumes of Similar Figures

(a) (i)
$$\frac{v_S}{v_L} = \left(\frac{R_S}{R_L}\right)^3$$
$$\frac{640}{1250} = \left(\frac{R_S}{R_L}\right)^3$$
$$\therefore \frac{R_S}{R_L} = \sqrt[3]{\frac{640}{1250}}$$
$$= \frac{4}{5}$$

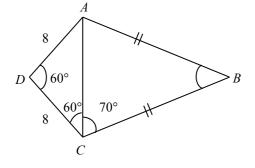
Ratio of the smaller radius to the larger radius = 4 : 5

ii)
$$\frac{A_S}{A_L} = \left(\frac{R_S}{R_L}\right)^2$$

= $\left(\frac{4}{5}\right)^2$
= $\frac{16}{25}$

 \therefore Ratio of the surface area to the larger surface area = 16 : 25

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg f facebook.com/JossSticksTuition 13 twitter.com/MissLoi Unauthorized copying, resale or distribution prohibited. Copyright © 2009 o exampaper.com.sg. All rights reserved.


紙

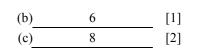
(b)
$$\frac{M_S}{M_L} = \left(\frac{R_S}{R_L}\right)^3$$
$$\frac{M_S}{25} = \left(\frac{4}{5}\right)^3$$
$$M_S = \frac{64}{125} \times 25$$
$$= 12.8 \text{ kg}$$

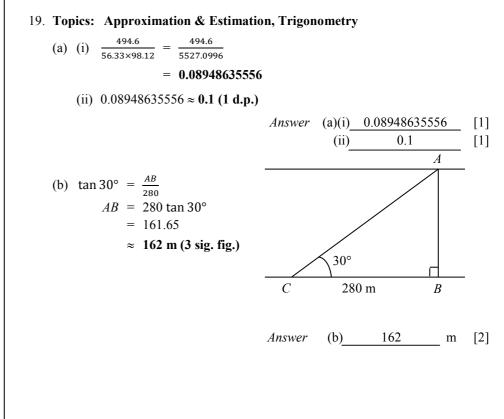
 \therefore Mass of the smaller sphere = 12.8 kg

16. Topic: Geometry

(a) (i)

- $\angle DAC = \angle ACD = 60^{\circ}$
- $\therefore \Delta DAC$ is an equilateral $\Delta \Rightarrow$ Length of AC = 8 cm


(ii) Since
$$\angle ACD = 60^{\circ}$$
, $\angle ACB = 130^{\circ} - 60^{\circ}$
 $= 70^{\circ}$
 $\therefore \angle ABC = 180^{\circ} - 2(70^{\circ})$
 $= 40^{\circ}$ (sum of $\angle s$ in Δ)
 $Answer(a)(i) \ AC = 8 \ cm$ [1]
(ii) $\angle ABC = 40^{\circ}$ [1]
(i) $\angle POT = 2 \times \angle PQO$ (\angle at centre $= 2 \times \angle s$ at circumference)
 $= 2(32^{\circ})$
 $= 64^{\circ}$
(ii) $\angle OPT = 90^{\circ}$ (tan \perp radius)
 $\therefore \angle OTP = 180^{\circ} - 90^{\circ} - 64^{\circ}$
 $= 26^{\circ}$ (sum of $\angle s$ in Δ)
 $Answer(b)(i) \angle POT = 64^{\circ}$ [1]
(ii) $\angle OTP = 26^{\circ}$ [1]


17. Topic: Algebra

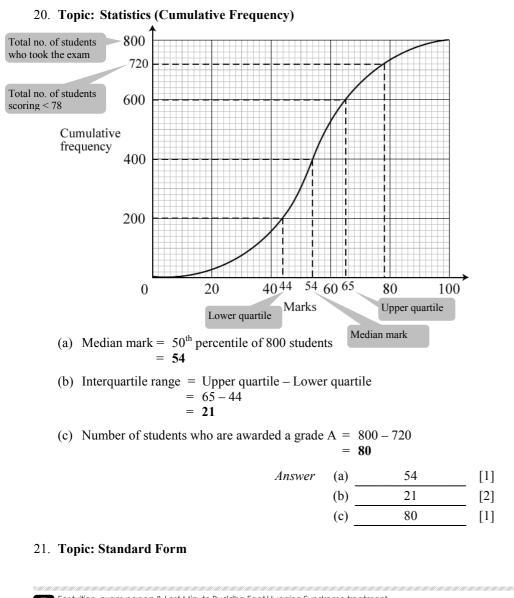
(a) (i)
$$2x^2 + kx - 15 = 0$$
(1)
Sub $x = 3$,
 $2(3)^2 + 3k - 15 = 0$
 $18 + 3k - 15 = 0$
 $3k = -3$
 $k = -1$

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition twitter.com/MissLoi Unauthorized copying, resale or distribution prohibited. Copyright © 2009 o exampaper.com.sg. All rights reserved.

(ii) Sub
$$k = -1$$
 into (1),
 $2x^2 - x - 15 = 0$
 $(2x + 5)(x - 3) = 0$
 $2x + 5 = 0$ or $x - 3 = 0$
 $x = -\frac{5}{2}$ $x = 3$ (given)
 $= -2.5$

(b)
$$6p^2 - 3pq - 10ap + 5a = 3p(2p - q) - 5a(2p - q)$$

= $(2p - q)(3p - 5a)$


Answer (a)(i)
$$k = -1$$
 [1]
(ii) $x = -2.5$ [1]
(b) $(2p-q)(3p-5a)$ [2]

[1]

18. Topic: Factors and Multiples

(a)
$$150 = 2 \times 75$$

 $= 2 \times 3 \times 25$
 $= 2 \times 3 \times 5^{2}$
(b) $150 = 2 \times 3 \times 5^{2}$
 $48 = 2^{4} \times 3$
 $HCF = 2 \times 3$
 $= 6$
(c) LCM of 48 and $150 = 2^{4} \times 3 \times 5^{2}$
 $= 1200$
 Least number of chocolate bars he could have bought = $\frac{1200}{150}$
 $= 8$
 $Answer$ (a) $150 = 2 \times 3 \times 5^{2}$

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition to twitter.com/MissLoi

(a)
$$1.32 \times 10^9 - 832 \times 10^6 = 10^6 [1.32 \times 10^3 - 832]$$

= $10^6 [1320 - 832]$
= 488×10^6
= 4.88×10^8
1 million = 1×10^6
1 billion = 1×10^9

(b) Average number of per square kilometer living in Africa

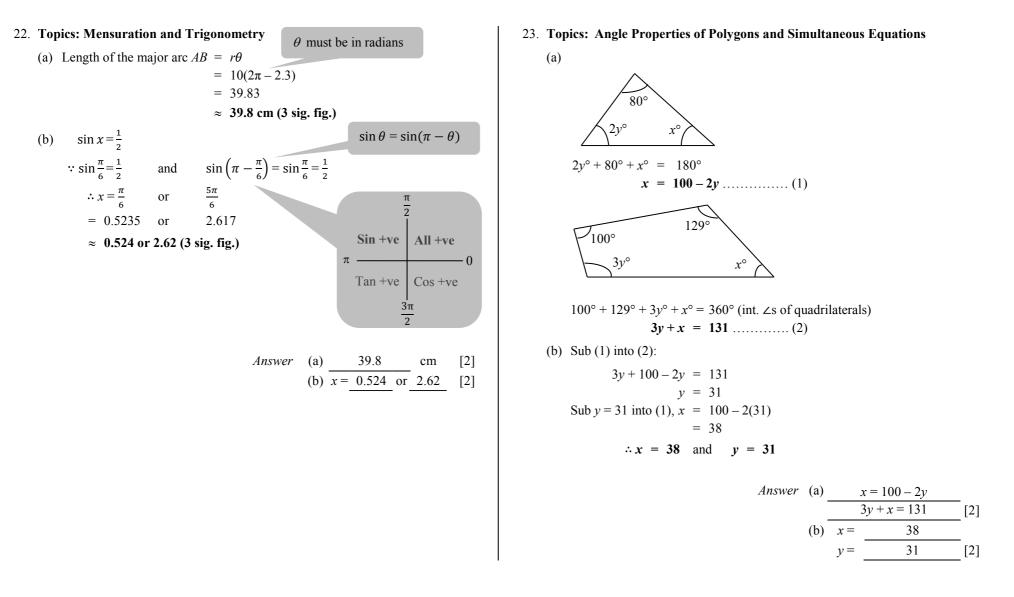
$$=\frac{832\times10^{6}}{26.6\times10^{6}}$$

$$= 31.3 \text{ people per sq. km}$$
(c) Number of people living in Singapore = $\frac{4.48\times10^{6}}{1.32\times10^{9}}$

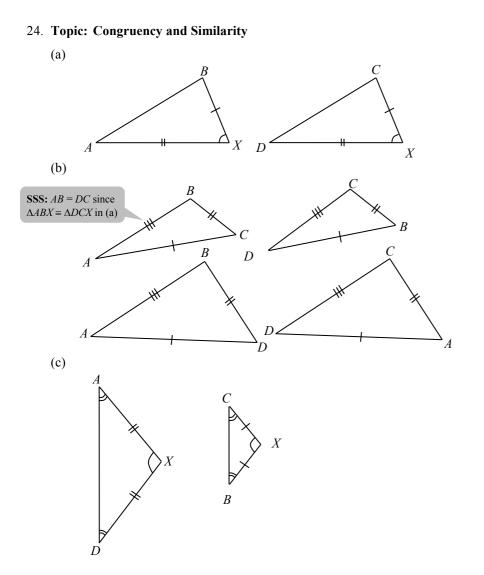
$$= \frac{4.48}{1.32\times10^{3}}$$

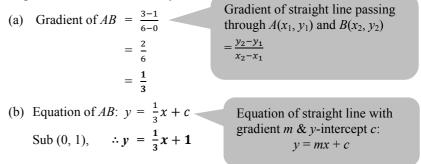
$$= \frac{4.48}{1.320}$$

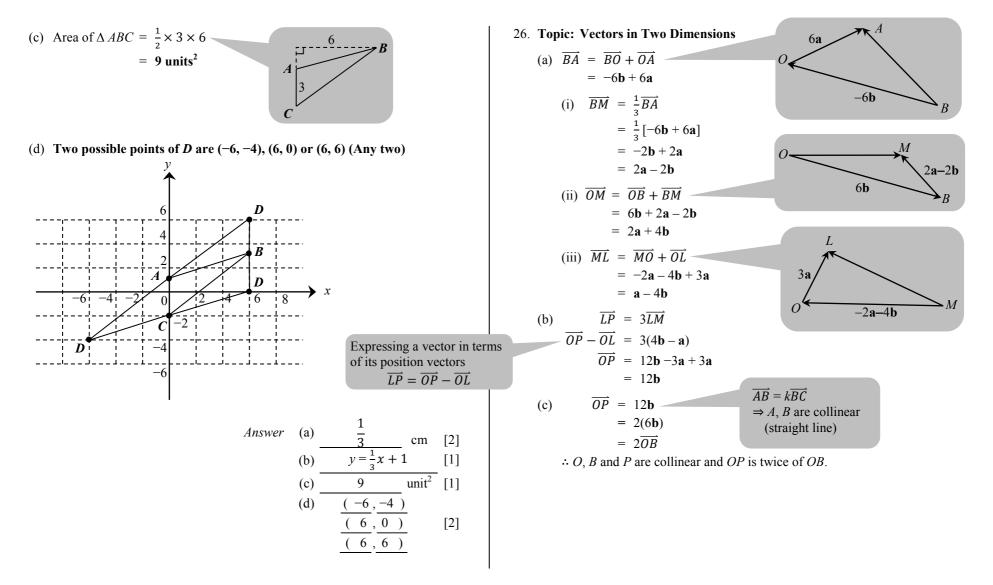
$$= \frac{14}{4125}$$
Ratio of no. of people living in Singapore : no.


Ratio of no. of people living in Singapore : no. of people living in China = 14 : 4125 = $1 : 294 \frac{9}{14}$

Answer	(a)	$4.88 imes 10^8$	[2]
	(b)	31.3	[1]
	(c)	$1:294\frac{9}{14}$	[1]

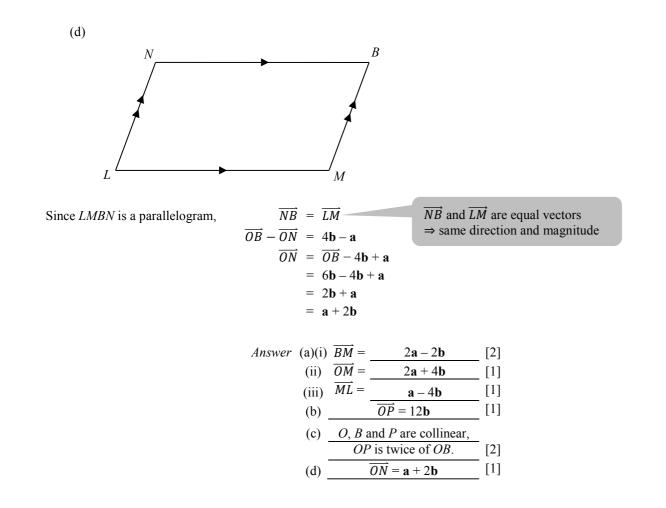

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition twitter.com/MissLoi





Answer	(a) In triangles	ABX and DC	X,						
	$\overline{AX} = DX(g$	$\overline{AX = DX \text{ (given)}}$							
	BX = CX (given)								
	$\angle AXB = \angle$	$\angle AXB = \angle CXD$ (vertically opp. $\angle s$)							
	∴ By SAS	\therefore By SAS property, \triangle <i>ABX</i> and \triangle <i>DCX</i> are congruent.							
	(b) Triangles	ABC	and	DCB					
	or Triangles	ABD	and	DCA	[1]				
	(c) Triangles	ADX	and	CBX	[1]				
	∴ By SAS (b) Triangles or Triangles	property, ΔAB ABC	$BX \text{ and } \Delta D$ and and	CX are congruent. DCB DCA	— <u> </u>				

25. Topic: Coordinate Geometry



Unauthorized copying, resale or distribution prohibited. Copyright © 2009 φ exampaper.com.sg. All rights reserved.

紙

