ELEMENTARY MATHEMATICS

Paper 2 Suggested Solutions

4017/02

October/November 2008

1. Topics: Algebraic Manipulation, Solutions to Quadratic Equations
(a) $\frac{7 p^{2}-28}{p^{2}+2 p}=\frac{7\left(p^{2}-4\right)}{p(p+2)}$

$$
\begin{aligned}
& =\frac{7(p+2)(p-2)}{p(p+2)} \\
& =\frac{7(p-2)}{p}
\end{aligned}
$$

(b) $1-\frac{3 f-g}{f+2 g}=\frac{f+2 g-(3 f-g)}{f+2 g}$

$$
\begin{aligned}
& =\frac{f+2 g-3 f+g}{f+2 g} \\
& =\frac{3 g-2 f}{f+2 g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Completing the Square: } \\
& \begin{aligned}
x^{2}+b x+c & =x^{2}+b x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
& =\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
\end{aligned}
\end{aligned}
$$

2. Topic: Trigonometry
(a) $\cos 49^{\circ}=\frac{A D}{9.4}$

$$
A D \approx 6.17 \mathrm{~m} \text { (3 sig. fig.) }
$$

(b) $\angle P A B=90^{\circ}-49^{\circ}-32^{\circ}=9^{\circ}$

$$
\sin 9^{\circ}=\frac{P B}{12.1}
$$

$$
P B \approx \mathbf{1 . 8 9} \mathbf{m} \text { (3 sig. fig.) }
$$

(c) Area of $\triangle A P Q=\frac{1}{2}(9.4)(12.1) \sin 32^{\circ}$

$$
\approx 30.1 \mathrm{~m}^{2} \text { (3 sig. fig.) }
$$

(d) Using cosine rule, $P Q^{2}=9.4^{2}+12.1^{2}-2(9.4)(12.1) \cos 32^{\circ}$

$$
P Q \approx 6.47 \mathrm{~m} \text { (3 sig. fig.) }
$$

3. Topic: Arithmetic (Application of Mathematics in Practical Situations)
(a) Total cost of making 25000 souvenirs $=25000 \times \$ 0.90$

$$
=\$ 22500
$$

(b) Cost of materials per souvenir $=\$\left[\frac{0.9}{15} \times 5\right]=\$ \mathbf{0 . 3 0}$ Cost of wages per souvenir $=\$\left[\frac{0.9}{15} \times 4\right]=\mathbf{\$ 0 . 2 4}$
(c) Total no. of hours spent $=7 \times 5=35$ hours \Rightarrow Salary for 35 hours $=\$ 630$ (Given)

$$
\text { Salary per hour }=\$ 630 \div 35=\$ 18
$$

\therefore no. of souvenirs John made in one hour $=\frac{18}{0.24}=75$
(d) From (b): Original cost of materials $=\$ 0.30$
\Rightarrow Increase in cost of materials $=\$ 0.30 \times 50 \%=\$ 0.15$
Original wages $=\$ 0.24$
\Rightarrow Increase in wages $=\$ 0.24 \times 10 \%=\$ 0.024$
$\%$ increase in cost of making a souvenir $=\frac{\$ 0.15+\$ 0.024}{\$ 0.90} \times 100 \%$
$\approx 19.3 \%$ (3 sig. fig.)
(e) 125% of cost price $=\$ 2.00$
\Rightarrow Cost price $=\frac{\$ 2.00}{\frac{125}{100}}=\$ 1.60$

4．Topic：Number Patterns
（a）$u_{5}=2^{4}+9=\mathbf{2 5}$（shown）
（b）$u_{6}=2^{5}+11=43$
（c）$u_{n}=2^{n-1}+2 \mathrm{n}-1$
（d）$u_{20}=2^{19}+2(20)-1=\mathbf{5 2 4 3 2 7}$
（e）（i）L．H．S．： $2^{n-1}-2^{n-2}=\frac{2^{n}}{2}-\frac{2^{n}}{2^{2}}$

$$
\begin{aligned}
& =2^{n}\left(\frac{1}{2}-\frac{1}{4}\right) \\
& =2^{n}\left(\frac{1}{4}\right) \\
& =2^{n}\left(2^{-2}\right) \\
& =\mathbf{2}^{n-2}=\text { R.H.S. (Shown) }
\end{aligned}
$$

（ii）$u_{n}-u_{n-1}=\left[2^{n-1}+2 n-1\right]-\left[2^{n-2}+2(n-1)-1\right]$

$$
\begin{aligned}
& =\left[2^{n-1}+2 n-1\right]-\left[2^{n-2}+2 n-3\right] \\
& =2^{n-1}+2 n-1-2^{n-2}-2 n+3 \\
& =2^{n-1}-2^{n-2}+2 \\
& =\mathbf{2}^{n-2}+\mathbf{2}
\end{aligned}
$$

$$
\text { Sub } 2^{n-1}-2^{n-2}=2^{n-2}
$$

$$
\text { as proven in }(\mathrm{e})(\mathrm{i}) .
$$

5．Topic：Algebraic Representation \＆Formulae
（a）Cost of each apple $=\frac{\$ 12}{m}=\left(\frac{\mathbf{1 2 0 0}}{m}\right) \mathbf{c}$ \qquad
$\$ 12=1200 \phi$
\rightarrow question requires this to be expressed in cents．
（b）No．of remaining apples $=(m-3)$
.......... (1)

Selling price of each apple $=\left(\frac{1200}{m}+2\right) \phi$
\therefore Total sum received from the sale of the apples

$$
=(m-3)\left(\frac{1200}{m}+2\right)
$$

（c）$(m-3)\left(\frac{1200}{m}+2\right)-1200=96$

$$
(m-3)\left(\frac{1200+2 m}{m}\right)=1296
$$

Total cost $=\$ 12=1200 \phi$（given） Total sales $=(m-3)\left(\frac{1200}{m}+2\right)$ from（b）

$$
(m-3)(1200+2 m)=1296 m
$$ Profit $=$ total sales - total cost

$1200 m+2 m^{2}-3600-6 m=1296 m$

$$
2 m^{2}-102 m-3600=0
$$

$$
m^{2}-51 m-1800=0(\text { Shown })
$$

（d）$m^{2}-51 m-1800=0$

$$
\begin{aligned}
m & =\frac{51 \pm \sqrt{(-51)^{2}-4(1)(-1800)}}{2} \\
& =\frac{51 \pm \sqrt{9801}}{2} \\
& =\mathbf{7 5} \mathbf{o r}-\mathbf{2 4}
\end{aligned}
$$

（e）$m=75$（ $m=-24$ rejected \because number of apples cannot be negative）
Sub $m=75$ into（1）：Selling price $=\left(\frac{1200}{75}+2\right) \varnothing$

$$
=18 ¢=\$ 0.18
$$

6．Topics：Congruence \＆Similarity，Angles \＆Triangles
（a）$\angle L A D=\angle L C B$（angles in same segment）
$\angle L D A=\angle L B C$（angles in same segment）
$\angle A L D=\angle C L B=90^{\circ}$（vertically opposite angles）
$\therefore \triangle L A D$ and $\triangle L C B$ are similar（AAA）（Shown）
（b）（i）$\angle C N O=90^{\circ}(O N \perp B C \because N$ is midpt of $B C$ of isosceles $\triangle O B C)$
（ii）$\angle D C B=\angle D A B=58^{\circ}$（angles in same segment） $\angle C O N=180^{\circ}-\angle C N O-(\angle D C O+\angle D C B)($ sum of $\angle \mathrm{s}$ in a triangle） $=180^{\circ}-90^{\circ}-\left(18^{\circ}+58^{\circ}\right)$
$=14^{\circ} \quad \angle C N O=90^{\circ}$ from（b）（i）
（iii）$\angle C B A=180^{\circ}-\angle C L B-\angle D C B$（sum of $\angle \mathrm{s}$ in a triangle）
$=180^{\circ}-90^{\circ}-58^{\circ}$
$=32^{\circ}$
$\angle D C B=58^{\circ}$ from（b）（ii）
（iv）$\angle C D O=\angle D C O=18^{\circ}$（base $\angle \mathrm{s}$ of isosceles $\triangle D C O$ ）

$$
\begin{aligned}
\angle A D C & =\angle C B A \text { (angles in same segment) } \\
& =32^{\circ} \\
\angle A D O & =\angle A D C-\angle C D O \quad \angle C B A=32^{\circ} \text { from (b)(iii) } \\
& =32^{\circ}-18^{\circ} \\
& =\mathbf{1 4}^{\circ}
\end{aligned}
$$

7．Topics：Geometrical Properties of Circles，Trigonometry
（a）（i） $\tan \angle A O C=\frac{A C}{O C}(O C \perp A C \because O C$ is perpendicular bisector of chord $A B)$

$$
\begin{aligned}
& =\frac{40}{50} \\
\angle A O C & =38.66^{\circ} \\
\therefore \angle A O B & =2 \times \angle A O C \\
& =2 \times 38.66^{\circ} \\
& \approx 77.32^{\circ} \\
& \approx 77.3^{\circ}(\mathbf{3} \text { sig. fig. })
\end{aligned}
$$

（ii）Using Pythagoras＇theorem for $\triangle O A C$ ， $A O$（length of radius of sector $O A B)=\sqrt{40^{2}+50^{2}} \mathrm{~cm}$

$$
=\sqrt{4100} \mathrm{~cm}
$$

Area of window $=$ Area of sector $O A B-$ Area of $\triangle O A B$

$$
\begin{aligned}
& =\frac{1}{2} \times A O^{2} \times \angle A O B-\frac{1}{2} \times A B \times O C \\
& =\frac{1}{2}(\sqrt{4100})^{2}\left(\frac{77.32^{\circ}}{180^{\circ}} \times \pi\right)-\frac{1}{2}(80)(50) \\
& \approx 766 \mathbf{c m}^{2}(3 \text { sig. fig. })
\end{aligned}
$$

（b）（i）Using cosine rule for $\triangle D E X$ ，
$E X^{2}=D E^{2}+D X^{2}-2(D E)(D X) \cos \angle E D X$

$$
=80^{2}+80^{2}-2(80)(80) \cos 38^{\circ}
$$

$\angle A O B$ must to be

 converted to radians： $\frac{\theta}{180^{\circ}} \times \pi$ radians$\therefore E X \approx 52.09 \mathrm{~cm}$

$$
\approx 52.1 \mathrm{~cm} \text { (3 sig. fig.) }
$$

（ii）Using Pythagoras＇theorem，

$$
\begin{aligned}
D F=D Y & =\sqrt{200^{2}+80^{2}} \\
& =\sqrt{46400} \mathrm{~cm}
\end{aligned}
$$

Using cosine rule for $\triangle F D Y$ ，

$$
\begin{array}{rlrl}
F Y^{2} & =D F^{2}+D Y^{2}-2(D F)(D Y) \cos \angle F D Y & \\
\cos \angle F D Y & =\frac{(\sqrt{46400})^{2}+(\sqrt{46400})^{2}-(52.09)^{2}}{2 \sqrt{46400} \sqrt{46400}} & & F Y=E X \approx 52.09 \mathrm{~cm} \\
& =0.97076 & & \text { from (b)(i) }
\end{array}
$$

$\therefore \angle F D Y \approx \mathbf{1 3 . 9}{ }^{\circ}$（3 sig．fig．）

8．Topic：Mensuration
（a）（i）Using Pythagoras＇theorem，

$$
\text { Slant height, } \begin{aligned}
s & =\sqrt{\left(\frac{0.8}{2}\right)^{2}+2^{2}} \mathrm{~cm} \\
& =\sqrt{0.4^{2}+2^{2}} \mathrm{~cm} \\
& \approx 2.0396 \mathrm{~cm} \\
& \approx \mathbf{2 . 0 4} \mathbf{~ c m ~ (\mathbf { 3 }} \text { sig. fig.) }
\end{aligned}
$$

Radius of pencil $=\frac{0.8}{2} \mathrm{~cm}$
（ii）Total surface area
$=$ Area of cone + area of cylinder + area of circular base
$=\pi(0.4)(2.0396)+2 \pi(0.4)(16)+\pi(0.4)^{2}$
$\approx \mathbf{4 3 . 3} \mathbf{~ c m}^{\mathbf{2}}$（3 sig．fig．）$\quad \operatorname{Sub} s=2.0396$
（b）Volume of pencil
from（a）（i）into
area of cone $=\pi r s$
$=$ Volume of cone + volume of cylinder
$=\frac{1}{3} \pi(0.4)^{2}(2)+\pi(0.4)^{2}(16)$
$\approx 8.378 \mathrm{~cm}^{3}$
$\approx 8.38 \mathrm{~cm}^{3}$（ $\mathbf{3}$ sig．fig．）
（c）（i）Width of box $=6 \times$ pencil diameter $=6 \times 0.8 \mathrm{~cm}=4.8 \mathrm{~cm}$
Height of box $=2 \times$ pencil diameter $=2 \times 0.8 \mathrm{~cm}=1.6 \mathrm{~cm}$
Length of box $=1 \times$ pencil length $=(16+2) \mathrm{cm}=18 \mathrm{~cm}$
\therefore volume of box $=4.8 \mathrm{~cm} \times 1.6 \mathrm{~cm} \times 18 \mathrm{~cm}$
$=138.24 \mathrm{~cm}^{3}$（Shown）
（ii）Volume of box not occupied by the pencils
$=$ Volume of box - total volume of 12 pencils in box
$=138.24 \mathrm{~cm}^{3}-12 \times 8.378 \mathrm{~cm}^{3}$
$=37.704 \mathrm{~cm}^{3}$

> Volume of each pencil $\approx 8.378 \mathrm{~cm}^{3}$ from (b)
$\therefore \%$ of the volume not occupied by the pencils
$=\frac{37.704}{138.24} \times 100 \%$
≈ 27.3 \％

9．Topics：Vectors in Two Dimensions，Probability
（a）（i）$B C=\sqrt{(5-7)^{2}+(4-9)^{2}}$ units

$$
\begin{aligned}
& =\sqrt{29} \text { units } \\
& \approx 5.39 \text { units (} \mathbf{3} \text { sig. fig.) }
\end{aligned}
$$

Sub $B(5,4), C(7,9)$ into
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Sub $A(-3,1), B(5,4)$ into $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
（ii）Gradient of $A B, m=\frac{4-1}{5-(-3)}=\frac{3}{8}$
（iii）Sub $m=\frac{3}{8}$ into $y=m x+\mathrm{c}$ ：
$y=\frac{3}{8} x+c$
$\operatorname{Sub} A(-3,1)$ into（1）： $1=\frac{3}{8}(-3)+c$

$$
c=\frac{17}{8}
$$

$\therefore y=\frac{3}{8} x+\frac{17}{8}$
（iv）Mid－point of $A C=\left(\frac{-3+7}{2}, \frac{1+9}{2}\right)$
Sub $A(-3,1), C(7,9)$

$$
\therefore E=(\mathbf{2}, \mathbf{5})
$$

（v）Let the coordinates of $D=(x, y)$
Since $A B C D$ are the vertices of a parallelogram，
\Rightarrow Mid－point of $B D=$ Mid－point of $A C=E$
Hence，mid－point of $B D:\left(\frac{x+5}{2}, \frac{y+4}{2}\right)=(2,5)$
Coordinates of E from（a）（iv）

$$
\Rightarrow D=(-1,6) \Rightarrow \text { Position vector } \overrightarrow{O D}=\binom{-1}{6}
$$

Position vector $\overrightarrow{O E}=\binom{2}{5}$

$$
\begin{aligned}
\overrightarrow{E D} & =\overrightarrow{O D}-\overrightarrow{O E} \\
& =\binom{-1}{6}-\binom{2}{5} \\
& =\binom{-3}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x+5}{2}=2 \quad \frac{y+4}{2}=5 \\
& x+5=4 \quad y=10-4 \\
& x=-1 \quad y=6
\end{aligned}
$$

（b）（i）

	1	2	3	4	5	6
1		1，2	1，3＊	1，4	1，5	1，6＊
2	2，1		2，3＊	2，4＊	2，5	2，6 $6^{\text {¢ }}{ }^{\text {¢ }}$
3	3，1＊	3，2＊		3，4＊	3，5＊＊	3，6＊
4	4，1	4，2＾	4，3＊		4，5	4，6 ${ }^{\text {＊}}$
5	5，1	5，2	5，3＊＊	5，4		5，6＊
6	6，1＊	6，2＾＾＊	6，3＊	6，4＾＊	6，5＊	

\uparrow－both balls even
＊－sum is 8
－－at least one is multiple of 3

Without replacement $\Rightarrow(1$ ， 1），$(2,2) \ldots(6,6)$ outcomes are impossible．

From the possibility diagram，total no．of possible outcomes $=30$

$$
\operatorname{into}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

（ii）（a） P （both have even number）$=\frac{6}{30}$

$$
=\frac{1}{5}
$$

\＃of＾
Total \＃of outcomes
（b） $\mathrm{P}($ sum of numbers drawn is 8$)=\frac{4}{30}$

Total \＃of outcomes
Check：$\frac{1}{6} \times \frac{1}{5} \times 4$
（c） $\mathrm{P}($ product is 7$)=\frac{0}{30}=0$
（d） P （at least one of the no．drawn is a multiple of 3 ）$=\frac{8}{30}$

Elementary Mathematics (4017/02)

10. Topic: Graphical Solution of Equations

(a) Sub $x=4$ into $y=\frac{1}{5} x\left(12-x^{2}\right): \quad p=\frac{1}{5}(4)\left(12-4^{2}\right)=\mathbf{- 3 . 2}$
(b) See graph.
(c) Plot $y=1$ for the range $-3 \leq x \leq 4$.

From graph,

$$
y=\frac{1}{5} x\left(12-x^{2}\right) \text { intersects } y=1 \text { at } x=0.42,3.23
$$

\therefore Solution of $\frac{1}{5} x\left(12-x^{2}\right)=1: \boldsymbol{x}=\mathbf{0 . 4 2 , 3 . 2 3}$

$$
\begin{aligned}
& \text { Check: } x^{3}-12 x+5=0 \\
& \quad \Rightarrow x=3.23,-3.66,0.42
\end{aligned}
$$

(d) From graph, gradient of tangent at $(3,1.8)=\frac{4-(-0.5)}{2.25-3.75}$

```
AMaths students:
Check: }\frac{dy}{dx}=\frac{12}{5}-\frac{3\mp@subsup{x}{}{2}}{5
    Sub}x=3=>\frac{dy}{dx}=-
```

(e) Since $2 x+y=2$ is linear, sub the values of $x=-1$ and $x=3$ to obtain the y values of the two points:

x	-1	3
y	4	-4

Join up these two points to get the graph of $2 x+y=2$.
(f) (i) From graph, x-coordinate $=\mathbf{0 . 4 5}$
(ii) $\frac{1}{5} x\left(12-x^{2}\right)=2-2 x$

Comparing coefficients of (1) with $x^{3}+A x^{2}+B x+C=0$,
$A=0, B=-22, C=10$

Elementary Mathematics（4017／02）

11．Topic：Data Analysis（Statistics，Cumulative Frequency Distribution）
（a）Mean mark $=\frac{\Sigma f x}{\Sigma f}$
Use the mid－value of each interval for x ．

$$
\begin{aligned}
& =\frac{30(5)+70(15)+25(140)+35(110)+45(50)}{400} \\
& =\mathbf{2 7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { freq. }(x \leq 40)+ \\
& \text { frea }(40<x<5
\end{aligned}
$$

$$
\begin{aligned}
& \text { freq. }(40<x \leq 50) \\
& =350+50
\end{aligned}
$$

$$
=350+50
$$

（b）

Mark (x)	$x=0$	$x \leq 10$	$x \leq 20$	$x \leq 30$	$x \leq 40$	$x \leq 50$			
No．of people	0	30	100	240	350	400			
:---	:---								
freq．$(x \leq 10)+$ freq．$(10<x \leq 20)$ $=30+70$	freq．$(x \leq 20)+$ freq．$(20<x \leq 30)$ $=100+140$		freq．$(\mathrm{x} \leq 30)+$						
:---									
freq．$(30<\mathrm{x} \leq 40)$									
$=240+110$									

（d）From the curve in（c）：
（i） Median $=\mathbf{2 7 . 5}$
（ii）Upper Quartile $(U Q)=\mathbf{3 5}$
（iii）Lower Quartile（LQ）$=20$
Interquartile Range $=\mathrm{UQ}-\mathrm{LQ}$

$$
=35-20
$$

$$
=15
$$

（e） 15% of people $=\frac{14}{100} \times 400=60$
15% scored above this mark $=$

From the curve in（c），
Least mark needed to go on to the second round $=\mathbf{3 8 . 5}$
（c）

