ELEMENTARY MATHEMATICS

Paper 2 Suggested Solutions
October／November 2008

1．Topics：Algebraic Manipulation，Solutions to Quadratic Equations
（a）$\frac{7 p^{2}-28}{p^{2}+2 p}=\frac{7\left(p^{2}-4\right)}{p(p+2)}$

$$
\begin{aligned}
& =\frac{7(p+2)(p-2)}{p(p+2)} \\
& =\frac{7(p-\mathbf{2})}{p}
\end{aligned}
$$

（b） $1-\frac{3 f-g}{f+2 g}=\frac{f+2 g-(3 f-g)}{f+2 g}$

$$
\begin{aligned}
& =\frac{f+2 g-3 f+g}{f+2 g} \\
& =\frac{3 g-2 f}{f+2 g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Completing the Square: } \\
& \begin{aligned}
x^{2}+b x+c & =x^{2}+b x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
& =\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
\end{aligned}
\end{aligned}
$$

4016／02
（c）（i）$x^{2}+11 x-15=x^{2}+11 x+\left(\frac{11}{2}\right)^{2}-\left(\frac{11}{2}\right)^{2}-15$

$$
\begin{aligned}
& =\left(x+\frac{11}{2}\right)^{2}-45.25 \\
& =(x+5.5)^{2}-45.25
\end{aligned}
$$

（ii）$x^{2}+11 x-15=0$
From（c）（ii）：

$$
\begin{aligned}
(x+5.5)^{2}-45.25 & =0 \\
(x+5.5)^{2} & =45.25 \\
x+5.5 & = \pm 6.7268
\end{aligned}
$$

Hence question（no Otherwise stated）
\Rightarrow you cannot use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
x=1.23 \text { or }-12.23
$$

2．Topic：Trigonometry
（a） $\cos 49^{\circ}=\frac{A D}{9.4}$

$$
A D \approx 6.17 \mathrm{~m} \text { (3 sig. fig.) }
$$

（b）$\angle P A B=90^{\circ}-49^{\circ}-32^{\circ}=9^{\circ}$ $\sin 9^{\circ}=\frac{P B}{12.1}$

$$
P B \approx 1.89 \mathrm{~m} \text { (3 sig. fig.) }
$$

（c）Area of $\triangle A P Q=\frac{1}{2}(9.4)(12.1) \sin 32^{\circ}$ $\approx 30.1 \mathrm{~m}^{2}$（3 sig．fig．）
（d）Using cosine rule，$P Q^{2}=9.4^{2}+12.1^{2}-2(9.4)(12.1) \cos 32^{\circ}$

$$
P Q \approx 6.47 \mathrm{~m} \text { (3 sig. fig.) }
$$

3．Topic：Arithmetic（Application of Mathematics in Practical Situations）
（a）Total cost of making 25000 souvenirs $=25000 \times \$ 0.90$

$$
=\$ 22500
$$

（b）Cost of materials per souvenir $=\$\left[\frac{0.9}{15} \times 5\right]=\mathbf{\$ 0 . 3 0}$ Cost of wages per souvenir $=\$\left[\frac{0.9}{15} \times 4\right]=\$ \mathbf{0 . 2 4}$
（c）Total no．of hours spent $=7 \times 5=35$ hours \Rightarrow Salary for 35 hours $=\$ 630$（Given）

$$
\text { Salary per hour }=\$ 630 \div 35=\$ 18
$$

\therefore no．of souvenirs John made in one hour $=\frac{18}{0.24}=75$
（d）From（b）：Original cost of materials $=\$ 0.30$
\Rightarrow Increase in cost of materials $=\$ 0.30 \times 50 \%=\$ 0.15$
Original wages $=\$ 0.24$
\Rightarrow Increase in wages $=\$ 0.24 \times 10 \%=\$ 0.024$
$\%$ increase in cost of making a souvenir $=\frac{\$ 0.15+\$ 0.024}{\$ 0.90} \times 100 \%$
$\approx 19.3 \%$（ 3 sig．fig．）
（e） 125% of cost price $=\$ 2.00$
\Rightarrow Cost price $=\frac{\$ 2.00}{\frac{125}{100}}=\$ \mathbf{1 . 6 0}$

4．Topic：Number Patterns
（a）$u_{5}=2^{4}+9=\mathbf{2 5}$（shown）
（b）$u_{6}=2^{5}+11=43$
（c）$u_{n}=2^{n-1}+2 n-1$
（d）$u_{20}=2^{19}+2(20)-1=524327$
（e）（i）L．H．S．： $2^{n-1}-2^{n-2}=\frac{2^{n}}{2}-\frac{2^{n}}{2^{2}}$

$$
\begin{aligned}
& =2^{n}\left(\frac{1}{2}-\frac{1}{4}\right) \\
& =2^{n}\left(\frac{1}{4}\right) \\
& =2^{n}\left(2^{-2}\right) \\
& =2^{n-2}=\text { R.H.S. (Shown) }
\end{aligned}
$$

（ii）$u_{n}-u_{n-1}=\left[2^{n-1}+2 n-1\right]-\left[2^{n-2}+2(n-1)-1\right]$

$$
\begin{array}{ll}
=\left[2^{n-1}+2 n-1\right]-\left[2^{n-2}+2 n-3\right] & \\
=2^{n-1}+2 n-1-2^{n-2}-2 n+3 & \text { Sub } 2^{n-1}-2^{n-2}=2^{n-2} \\
=2^{n-1}-2^{n-2}+2 & \\
=2^{n-2}+2 &
\end{array}
$$

5．Topic：Algebraic Representation \＆Formulae
（a）Cost of each apple $=\frac{\$ 12}{m}=\left(\frac{\mathbf{1 2 0 0}}{\boldsymbol{m}}\right)$ c

$\$ 12=1200 \not \subset$

（b）No．of remaining apples $=(m-3)$
\rightarrow question requires this to be expressed in cents．

Selling price of each apple $=\left(\frac{1200}{m}+2\right) \phi$
\therefore Total sum received from the sale of the apples

$$
=(m-3)\left(\frac{1200}{m}+2\right)
$$

（c）$(m-3)\left(\frac{1200}{m}+2\right)-1200=96$

$$
(m-3)\left(\frac{1200+2 m}{m}\right)=1296
$$

Total cost $=\$ 12=1200 \phi$（given）

$$
(m-3)(1200+2 m)=1296 m
$$ Total sales $=(m-3)\left(\frac{1200}{m}+2\right)$ from（b） Profit $=$ total sales - total cost

$1200 m+2 m^{2}-3600-6 m=1296 m$

$$
2 m^{2}-102 m-3600=0
$$

$$
m^{2}-51 m-1800=0(\text { Shown })
$$

（d）$m^{2}-51 m-1800=0$

$$
\begin{aligned}
m & =\frac{51 \pm \sqrt{(-51)^{2}-4(1)(-1800)}}{2} \\
& =\frac{51 \pm \sqrt{9801}}{2} \\
& =75 \text { or }-24
\end{aligned}
$$

（e）$m=75(m=-24$ rejected \because number of apples cannot be negative）

$$
\begin{aligned}
\text { Sub } m=75 \text { into (1): Selling price } & =\left(\frac{1200}{75}+2\right) \phi \\
& =\mathbf{1 8 \Phi}=\mathbf{\$ 0 . 1 8}
\end{aligned}
$$

6．Topics：Congruence \＆Similarity，Angles \＆Triangles
（a）$\angle L A D=\angle L C B$（angles in same segment）
$\angle L D A=\angle L B C$（angles in same segment）
$\angle A L D=\angle C L B=90^{\circ}$（vertically opposite angles）
$\therefore \triangle L A D$ and $\triangle L C B$ are similar（AAA）（Shown）
（b）（i）$\angle C N O=90^{\circ}(O N \perp B C \because N$ is midpt of $B C$ of isosceles $\triangle O B C)$
（ii）$\angle D C B=\angle D A B=58^{\circ}$（angles in same segment）

$$
\begin{aligned}
\angle C O N & =180^{\circ}-\angle C N O-(\angle D C O+\angle D C B)(\text { sum of } \angle \mathrm{s} \text { in a triangle }) \\
& =180^{\circ}-90^{\circ}-\left(18^{\circ}+58^{\circ}\right) \\
& =14^{\circ} \quad \angle C N O=90^{\circ} \text { from (b)(i) }
\end{aligned}
$$

（iii）$\angle C B A=180^{\circ}-\angle C L B-\angle D C B$（sum of $\angle \mathrm{s}$ in a triangle）

$$
\begin{aligned}
& =180^{\circ}-90^{\circ}-58^{\circ} \\
& =32^{\circ}
\end{aligned} \angle D C B=58^{\circ} \text { from (b)(ii) }
$$

（iv）$\angle C D O=\angle D C O=18^{\circ}($ base $\angle \mathrm{s}$ of isosceles $\triangle D C O)$ $\angle A D C=\angle C B A$（angles in same segment）
$=32^{\circ}$
$\angle A D O=\angle A D C-\angle C D O$
$\angle C B A=32^{\circ}$ from（b）（iii）
$=32^{\circ}-18^{\circ}$
$=14^{\circ}$

7．Topics：Geometrical Properties of Circles，Trigonometry
（a）（i） $\tan \angle A O C=\frac{A C}{O C}(O C \perp A C \because O C$ is perpendicular bisector of chord $A B)$

$$
\begin{aligned}
& =\frac{40}{50} \\
\angle A O C & =0.6747 \mathrm{rad} \\
\therefore \angle A O B & =2 \times \angle A O C
\end{aligned}
$$

$$
=2 \times 0.6747 \mathrm{rad}
$$

$$
\approx 1.349 \mathrm{rad}
$$

$$
\approx 1.35 \mathrm{rad} \text { (3 sig. fig.) }
$$

（ii）Using Pythagoras＇theorem for $\triangle O A C$ ，
$A O$（length of radius of sector $O A B)=\sqrt{40^{2}+50^{2}} \mathrm{~cm}$

$$
=\sqrt{4100} \mathrm{~cm}
$$

Area of window $=$ Area of sector $O A B-$ Area of $\triangle O A B$

$$
\begin{aligned}
& =\frac{1}{2} \times A O^{2} \times \angle A O B-\frac{1}{2} \times A B \times O C \\
& =\frac{1}{2}(\sqrt{4100})^{2}(1.349)-\frac{1}{2}(80)(50) \\
& \approx 766 \mathbf{~ c m}^{2}(3 \text { sig. fig. })
\end{aligned}
$$

（b）（i）Using cosine rule for $\triangle D E X$ ，

$$
\begin{aligned}
E X^{2} & =D E^{2}+D X^{2}-2(D E)(D X) \cos \angle E D X \\
& =80^{2}+80^{2}-2(80)(80) \cos 38^{\circ} \\
\therefore E X & \approx 52.09 \mathrm{~cm} \\
& \approx 52.1 \mathrm{~cm} \text { (3 sig. fig.) }
\end{aligned}
$$

（ii）Using Pythagoras＇theorem，

$$
\begin{aligned}
D F=D Y & =\sqrt{200^{2}+80^{2}} \\
& =\sqrt{46400} \mathrm{~cm}
\end{aligned}
$$

Using cosine rule for $\triangle F D Y$ ，

$$
\begin{array}{rlrl}
F Y^{2} & =D F^{2}+D Y^{2}-2(D F)(D Y) \cos \angle F D Y & \\
\cos \angle F D Y & =\frac{(\sqrt{46400})^{2}+(\sqrt{46400})^{2}-(52.09)^{2}}{2 \sqrt{46400} \sqrt{46400}} & F Y=E X \approx 52.09 \mathrm{~cm} \\
& =0.97076 & & \text { from }(\mathrm{b})(\mathrm{i})
\end{array}
$$

8．Topic：Mensuration

$$
\therefore \angle F D Y \approx 13.9^{\circ} \text { (3 sig. fig.) }
$$

（a）（i）Using Pythagoras＇theorem，

$$
\text { Slant height, } \begin{aligned}
s & =\sqrt{\left(\frac{0.8}{2}\right)^{2}+2^{2}} \mathrm{~cm} \\
& =\sqrt{0.4^{2}+2^{2}} \mathrm{~cm} \\
& \approx 2.0396 \mathrm{~cm} \\
& \approx \mathbf{2 . 0 4} \mathbf{~ c m ~ (3 ~ s i g . ~ f i g .) ~}
\end{aligned}
$$

（ii）Total surface area
$=$ Area of cone + area of cylinder + area of circular base
$=\pi(0.4)(2.0396)+2 \pi(0.4)(16)+\pi(0.4)^{2}$
$\approx 43.3 \mathbf{~ c m}^{2}$（3 sig．fig．）
Sub $s=2.0396$
（b）Volume of pencil
$=\frac{1}{3} \pi(0.4)^{2}(2)+\pi(0.4)^{2}(16)$
$\approx 8.378 \mathrm{~cm}^{3}$
$\approx 8.38 \mathrm{~cm}^{3}$（3 sig．fig．）
（c）（i）Width of box $=6 \times$ pencil diameter $=6 \times 0.8 \mathrm{~cm}=4.8 \mathrm{~cm}$
Height of box $=2 \times$ pencil diameter $=2 \times 0.8 \mathrm{~cm}=1.6 \mathrm{~cm}$
Length of box $=1 \times$ pencil length $=(16+2) \mathrm{cm}=18 \mathrm{~cm}$
\therefore volume of box $=4.8 \mathrm{~cm} \times 1.6 \mathrm{~cm} \times 18 \mathrm{~cm}$
$=138.24 \mathrm{~cm}^{3}$（Shown）
（ii）Volume of box not occupied by the pencils
$=$ Volume of box - total volume of 12 pencils in box
$=138.24 \mathrm{~cm}^{3}-12 \times 8.378 \mathrm{~cm}^{3}$

Volume of each pencil $\approx 8.378 \mathrm{~cm}^{3}$ from（b）
$\therefore \%$ of the volume not occupied by the pencils
$=\frac{37.704}{138.24} \times 100 \%$
≈ 27.3 \％
9. Topic: Graphical Solution of Equations
(a) $\operatorname{Sub} x=4$ into $y=\frac{1}{5} x\left(12-x^{2}\right): \quad p=\frac{1}{5}(4)\left(12-4^{2}\right)=-3.2$
(b) See graph.
(c) Plot $y=1$ for the range $-3 \leq x \leq 4$.

From graph,

$$
y=\frac{1}{5} x\left(12-x^{2}\right) \text { intersects } y=1 \text { at } x=0.42,3.23
$$

\therefore Solution of $\frac{1}{5} x\left(12-x^{2}\right)=1: \boldsymbol{x}=\mathbf{0 . 4 2 , 3 . 2 3}$

$$
\text { Check: } \begin{aligned}
& x^{3}-12 x+5=0 \\
& \Rightarrow x=3.23,-3.66,0.42
\end{aligned}
$$

(d) From graph, gradient of tangent at $\begin{aligned}(3,1.8) & =\frac{4-(-0.5)}{2.25-3.75} \\ & =-3\end{aligned}$

$$
\begin{aligned}
& \text { AMaths students: } \\
& \text { Check: } \frac{d y}{d x}=\frac{12}{5}-\frac{3 x^{2}}{5} \\
& \quad \operatorname{Sub} x=3 \Rightarrow \frac{d y}{d x}=-3
\end{aligned}
$$

(e) Since $2 x+y=2$ is linear, sub the values of $x=-1$ and $x=3$ to obtain the y values of the two points:

x	-1	3
y	4	-4

Join up these two points to get the graph of $2 x+y=2$.
(f) (i) From graph, x-coordinate $=\mathbf{0 . 4 5}$
(ii) $\frac{1}{5} x\left(12-x^{2}\right)=2-2 x$

$$
\begin{equation*}
x^{3}-22 x+10=0 \tag{1}
\end{equation*}
$$

Comparing coefficients of (1) with $x^{3}+A x^{2}+B x+C=0$,

$$
A=0, B=-22, C=10
$$

10．Topics：Data Analysis（Statistics，Cumulative Frequency Distribution）， Probability
（a）（i）From the cumulative frequency graph，

> freq. $(x<20)-$
> freq. $(x \leq 16)$
> $=35-(7+3+14)$
（ii）（a）Mean mass $=\frac{\sum f x}{\sum f}$

Use the mid－value of each interval for x ．
（b）Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{3(6)^{2}+7(10)^{2}+14(14)^{2}+11(18)^{2}+5(22)^{2}}{40}-14.8^{2}} \\
& =4.4 \\
& \quad \frac{\sum f x}{\sum f}=14.8 \text { from (ii)(a) }
\end{aligned}
$$

（iii）The $2^{\text {nd }}$ curve will have an overall gentler slope（due to its larger standard deviation），lying above the original curve for $x<15$ and below the original curve for $x>15$ ，and intersecting the original curve at $x=15$ （since they have the same median）．
（b）（i）

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$		1,2	$1,3^{\star}$	1,4	1,5	$1,6^{\star}$
$\mathbf{2}$	2,1		$2,3^{\star}$	$2,4^{\star}$	2,5	$2,6^{\star \star \star}$
$\mathbf{3}$	$3,1^{\star}$	$3,2^{\star}$		$3,4^{\star}$	$3,5^{\star \star}$	$3,6^{\star}$
$\mathbf{4}$	4,1	$4,2^{\star}$	$4,3^{\star}$		4,5	$4,6^{\star} \star$
$\mathbf{5}$	5,1	$5,2^{\star}$	$5,3^{\star \star}$	5,4		$5,6^{\star}$
$\mathbf{6}$	$6,1^{\star}$	$6,2^{\star \star \star}$	$6,3^{\star}$	$6,4^{\star \star}$	$6,5^{\star}$	

A－both balls even
\＆－sum is 8
－－at least one is multiple of 3

$$
\text { Without replacement } \Rightarrow(1,
$$ $1),(2,2) \ldots(6,6)$ outcomes are impossible．

From the possibility diagram，total no．of possible outcomes $=30$
（ii）（a） $\begin{array}{rlrl}P(\text { both have even number）} & =\frac{6}{30} \\ & =\frac{1}{5} & & \text { \＃of } \uparrow \\ \text { Total \＃of outcomes } \\ \text { Check：} \frac{1}{6} \times \frac{1}{5} \times 6\end{array}$
（b） $\mathrm{P}($ sum of numbers drawn is 8$)=\frac{4}{30}$

$$
=\frac{2}{15} \quad \begin{aligned}
& \text { Total \# of outcomes } \\
& \text { Check: } \frac{1}{6} \times \frac{1}{5} \times 4
\end{aligned}
$$

（c） $\mathrm{P}($ product is 7$)=\frac{0}{30}=\mathbf{0}$
（d） $\mathrm{P}($ at least one of the no．drawn is a multiple of 3$)=\frac{18}{30}$

