GCE 'O' Level October/November 2008 Suggested Solutions

Elementary Mathematics (4016/02) version 1.2

ELEMENTARY MATHEMATICS Paper 2 Suggested Solutions

4016/02 October/November 2008 2.

3.

1. Topics: Algebraic Manipulation, Solutions to Quadratic Equations

Topic: Trigonometry (a) $\cos 49^\circ = \frac{AD}{a}$ $AD \approx 6.17 \text{ m} (3 \text{ sig. fig.})$ (b) $\angle PAB = 90^{\circ} - 49^{\circ} - 32^{\circ} = 9^{\circ}$ $\sin 9^\circ = \frac{PB}{12.1}$ $PB \approx 1.89 \text{ m} (3 \text{ sig. fig.})$ (c) Area of $\triangle APQ = \frac{1}{2}(9.4)(12.1) \sin 32^{\circ}$ $\approx 30.1 \text{ m}^2$ (3 sig. fig.) (d) Using cosine rule, $PQ^2 = 9.4^2 + 12.1^2 - 2(9.4)(12.1) \cos 32^\circ$ $PO \approx 6.47 \text{ m} (3 \text{ sig. fig.})$ **Topic:** Arithmetic (Application of Mathematics in Practical Situations) (a) Total cost of making 25 000 souvenirs = $25000 \times \$0.90$ = \$22500 (b) Cost of materials per souvenir = $\left[\frac{0.9}{15} \times 5\right] =$ **\$0.30** Cost of wages per souvenir = $\left\{ \begin{bmatrix} 0.9 \\ 15 \end{bmatrix} \times 4 \right\} =$ **\$0.24** (c) Total no. of hours spent = $7 \times 5 = 35$ hours \Rightarrow Salary for 35 hours = \$630 (Given) Salary per hour $= $630 \div 35 = 18 \therefore no. of souvenirs John made in one hour $=\frac{18}{0.24}=75$ (d) From (b): Original cost of materials = 0.30 \Rightarrow Increase in cost of materials = $0.30 \times 50\% = 0.15$ Original wages = \$0.24 \Rightarrow Increase in wages = $0.24 \times 10\% = 0.024$ % increase in cost of making a souvenir = $\frac{\$0.15 + \$0.024}{\$0.00} \times 100\%$ ≈ 19.3% (3 sig. fig.) (e) 125% of cost price = \$2.00

$$\Rightarrow \text{Cost price} = \frac{\$2.00}{\frac{125}{100}} = \$1.60$$

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg if facebook.com/JossSticksTuition is witter.com/MissLoi

1/5

紙

(d)
$$m^2 - 51m - 1800 = 0$$

 $m = \frac{51 \pm \sqrt{(-51)^2 - 4(1)(-1800)}}{2}$
 $= \frac{51 \pm \sqrt{9801}}{2}$
 $= 75 \text{ or } -24$
(e) $m = 75 (m = -24 \text{ rejected } \because \text{ number of apples cannot be negative})$
Sub $m = 75 \text{ into } (1)$: Selling price $= \left(\frac{1200}{75} + 2\right) e$
 $= 18e = \$0.18$
6. **Topics: Congruence & Similarity, Angles & Triangles**
(a) $\angle LAD = \angle LCB$ (angles in same segment)
 $\angle LDA = \angle LBC$ (angles in same segment)
 $\angle LDA = \angle LBC$ (angles in same segment)
 $\angle ALD = \angle CLB = 90^{\circ}$ (vertically opposite angles)
 $\therefore \Delta LAD$ and ΔLCB are similar (AAA) (Shown)
(b) (i) $\angle CNO = 90^{\circ}$ ($N \perp BC \because N$ is midpt of BC of isosceles $\triangle OBC$)
(ii) $\angle DCB = \angle DAB = 58^{\circ}$ (angles in same segment)
 $\angle CON = 180^{\circ} - \angle CNO - (\angle DCO + \angle DCB)$ (sum of $\angle s$ in a triangle)
 $= 180^{\circ} - 90^{\circ} - (18^{\circ} + 58^{\circ})$
 $= 14^{\circ}$
 $\angle CNO = 90^{\circ}$ from (b)(i)
(iii) $\angle CDA = 180^{\circ} - \angle CLB - \angle DCB$ (sum of $\angle s$ in a triangle)
 $= 180^{\circ} - 90^{\circ} - 58^{\circ}$
 $= 32^{\circ}$
 $\angle DCB = 58^{\circ}$ from (b)(ii)
(iv) $\angle CDO = \angle DCO = 18^{\circ}$ (base $\angle s$ of isosceles $\triangle DCO$)
 $\angle ADC = \angle CBA$ (angles in same segment)
 $= 32^{\circ}$
 $\angle ADO = \angle CBA = 32^{\circ}$ from (b)(iii)
 $= 32^{\circ} - 18^{\circ}$

2/5

GCE 'O' Level October/November 2008 Suggested Solutions Elementary Mathematics (4016/02) version 1.2

7. **Topics:** Geometrical Properties of Circles, Trigonometry (a) (i) $\tan \angle AOC = \frac{AC}{OC} (OC \perp AC : OC \text{ is perpendicular bisector of chord } AB)$ $=\frac{40}{50}$ $\angle AOC = 0.6747$ rad $\therefore \angle AOB = 2 \times \angle AOC$ $= 2 \times 0.6747$ rad ≈ 1.349 rad \approx 1.35 rad (3 sig. fig.) (ii) Using Pythagoras' theorem for $\triangle OAC$, AO (length of radius of sector OAB) = $\sqrt{40^2 + 50^2}$ cm $=\sqrt{4100}$ cm Area of window = Area of sector OAB – Area of $\triangle OAB$ $=\frac{1}{2} \times AO^2 \times \angle AOB - \frac{1}{2} \times AB \times OC$ $=\frac{1}{2}(\sqrt{4100})^2(1.349) - \frac{1}{2}(80)(50)$ \approx 766 cm² (3 sig. fig.) (b) (i) Using cosine rule for ΔDEX , $EX^2 = DE^2 + DX^2 - 2(DE)(DX) \cos \angle EDX$ $= 80^{2} + 80^{2} - 2(80)(80)\cos 38^{\circ}$ $\therefore EX \approx 52.09 \text{ cm}$ \approx 52.1 cm (3 sig. fig.) (ii) Using Pythagoras' theorem, $DF = DY = \sqrt{200^2 + 80^2}$ $=\sqrt{46400}$ cm Using cosine rule for ΔFDY , $FY^2 = DF^2 + DY^2 - 2(DF)(DY) \cos \angle FDY$ $\cos \angle FDY = \frac{(\sqrt{46400})^2 + (\sqrt{46400})^2 - (52.09)^2}{2\sqrt{46400}\sqrt{46400}}$ $FY = EX \approx 52.09$ cm from (b)(i)= 0.97076∴∠*FDY*≈ **13.9°** (3 sig. fig.) **Topic: Mensuration** 8

3/5

紙

GCE 'O' Level October/November 2008 Suggested Solutions

Elementary Mathematics (4016/02) version 1.2

- 9. Topic: Graphical Solution of Equations
 - (a) Sub x = 4 into $y = \frac{1}{5}x(12 x^2)$: $p = \frac{1}{5}(4)(12 4^2) = -3.2$
 - (b) See graph.
 - (c) Plot y = 1 for the range $-3 \le x \le 4$.

From graph,

y =
$$\frac{1}{5}x(12 - x^2)$$
 intersects y = 1 at x = 0.42, 3.23
∴ Solution of $\frac{1}{5}x(12 - x^2) = 1$: x = 0.42, 3.23
Check: $x^3 - 12x + 5 = 0$
 $\Rightarrow x = 3.23, -3.66, 0.42$

(d) From graph, gradient of tangent at $(3, 1.8) = \frac{4 - (-0.5)}{2.25 - 3.75}$

AMaths students: Check: $\frac{dy}{dx} = \frac{12}{5} - \frac{3x^2}{5}$ Sub $x = 3 \Rightarrow \frac{dy}{dx} = -3$

(e) Since 2x + y = 2 is linear, sub the values of x = -1 and x = 3 to obtain the *y*-values of the two points:

x	-1	3
у	4	-4

Join up these two points to get the graph of 2x + y = 2.

(f) (i) From graph, x-coordinate = 0.45

(ii)
$$\frac{1}{5}x(12-x^2) = 2-2x$$

 $x^3-22x+10=0$ (1)

Comparing coefficients of (1) with $x^3 + Ax^2 + Bx + C = 0$,

$$A = 0, B = -22, C = 10$$

4/5

GCE 'O' Level October/November 2008 Suggested Solutions Elementary Mathematics (4016/02) version 1.2

- 10. Topics: Data Analysis (Statistics, Cumulative Frequency Distribution), Probability
 - (a) (i) From the cumulative frequency graph,

(iii) The 2nd curve will have an overall gentler slope (due to its larger standard deviation), lying above the original curve for x < 15 and below the original curve for x > 15, and intersecting the original curve at x = 15 (since they have the same median).

5/5

紙