Elementary Mathematics (4016/01)

ELEMENTARY MATHEMATICS

Paper 1 Suggested Solutions
October/November 2008

1. Topic: Standard Form
(a) $\frac{4.32}{32.8 \times 0.593}=0.2221$

$$
\approx 2.22 \times 10^{-1}(3 \text { sig. fig. })
$$

(b) $\begin{array}{rlr}\frac{6.82 \times 10^{5}}{1.55 \times 10^{-2}} & =\left(\frac{6.82}{1.55}\right) \times 10^{5-(-2)} \quad \frac{a_{m}}{a_{n}}=a^{m-n} \\ & =4.4 \times 10^{7}\end{array}$

Answer \qquad
(b) [1]
2. Topic: Statistics (Bar Chart \& Pie Chart)
(a)

Total no. of children $=6+30+12$

$$
\square,-4
$$

Total no.of children who walked or cycled $=\frac{30+12}{48}$
$=\frac{7}{8}$
(b)

Answer \qquad [1]

4016/01

Total no.of children
(b) [1]
3. Topic: Indices
(a) $\left(\frac{2}{x}\right)^{-3}=\left(\frac{x}{2}\right)^{3}$
$\left(\frac{a}{b}\right)^{-c}=\left(\frac{b}{a}\right)^{c}$
$=\frac{x^{3}}{8}$
(b) $\begin{aligned} 2^{34} \div 2^{4} & =2^{k} \\ 2^{34-4} & =2^{k}\end{aligned}$
人 $\boldsymbol{k}=\mathbf{3 0}$
$a^{m} \div a^{n}=a^{m-n}$
Answer \qquad
(b) $k=30$ [1] [1]
4. Topic: Arithmetic
(a) 3 hours $41 \mathbf{m i n}=3 \frac{\mathbf{4 1}}{\mathbf{6 0}} \mathbf{h r}$
(b) Distance travelled $=3 \frac{41}{60} \times 50 \quad$ Distance $=$ Speed \times Time taken
$=184.16$
$\approx 184 \mathbf{k m}$ (nearest km)
Answer

(a)	$3 \frac{41}{60}$	hours	$[1]$
(b)	184	km	$[1]$

Elementary Mathematics（4016／01）

5．Topic：Arithmetic
（a）$\frac{2}{5} \rightarrow \$ 4.20$
$\frac{3}{5} \rightarrow \frac{\$ 4.20}{2} \times 3$
$=\$ 6.30$
（b）$\$ 0.99 \rightarrow x$ grams

$$
\begin{aligned}
& \$ 1 \rightarrow \frac{100 x}{99} \text { grams } \\
& \$ y \rightarrow \frac{100}{99} x y \text { grams }
\end{aligned}
$$

$$
\begin{align*}
& \text { Answer (a) } \$ \frac{6.30}{\frac{100}{99} x y \text { grams }} \\
& \text { (b) }
\end{align*}
$$［1］

6．Topic：Mensuration

Perimeter of the shaded region $=3 \pi+1.5 \pi+6+3$
$=4.5 \pi+9$
Answer \qquad ［2］

7．Topic：Standard Form
（a） $\begin{aligned} 1.03 \times 10^{10} & =10.3 \times 10^{9} \quad 1 \text { billion }=1.0 \times 10^{9} \\ \therefore \boldsymbol{k} & =\mathbf{1 0 . 3}\end{aligned}$
$\therefore \boldsymbol{k}=\mathbf{1 0 . 3}$
（b） Estimated increase $=1.03 \times 10^{10}-6.5 \times 10^{9}$

$$
\begin{aligned}
& =10^{9}[1.03 \times 10-6.5] \\
& =\mathbf{3 . 8} \times \mathbf{1 0}^{9}
\end{aligned}
$$

Answer
（a）$k=$
［1］
（b） 3.8×10^{9}
［1］

8．Topic：Coordinate Geometry
（a）At y－axis，$x=0$ ，
$3(0)+2 y=8$
$2 y=8$
$y=4$
Coordinates of y－intercept
$\therefore A(\mathbf{0}, 4)$
（b） $3 x+2 y=8$
$2 y=-3 x+8$
Equation of straight line with gradient m and y －intercept c ： $y=m x+c$

Answer
\qquad
（b） ［1］

Elementary Mathematics（4016／01）

9．Topics：Pythagoras Theorem，Trigonometry
（a）If $\angle A B C$ is a right angle，by Pythagoras＇Theorem， $A C^{2}=A B^{2}+B C^{2}$ $A C^{2}=17^{2}=289 \mathrm{~cm}^{2}$
$A B^{2}+B C^{2}=15^{2}+8^{2}=225+64=289 \mathrm{~cm}^{2}=A C^{2}$
$\therefore \angle A B C$ is a right angle

（ii） $\cos \angle D A C=\cos \left(180^{\circ}-\angle B A C\right)$

$$
\begin{aligned}
& =-\cos \angle B A C \\
& =-\frac{15}{\mathbf{1 7}}
\end{aligned}
$$

Answer（a）$A C^{2}=A B^{2}+B C^{2}$（Pythagoras＇theorem）
\qquad

Answer（b）（i） $20 \quad \mathrm{~cm}^{2}$
（ii） $\cos \angle D A C=\quad-\frac{15}{17}$
10．Topic：Matrices
（a）$\left(\begin{array}{lll}14 & 5 & 1 \\ 15 & 0 & 5\end{array}\right)\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)=\binom{\mathbf{2 7}}{\mathbf{2 5}} \quad\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{a x+b y+c z}{d x+e y+f z}$
（b）Sandy＇s score is $\mathbf{2 7}$ marks and Roger＇score is $\mathbf{2 5}$ marks．

Answer \qquad $\binom{27}{25}$

$$
\text { Answer (b)Sandy's score is } 27 \text { marks }
$$

$$
\text { and Roger's score is } 25 \text { marks }
$$

11．Topic：Set Language and Notation

（a）

（b）$\quad \varepsilon=\{2,3,4,5,6,7 \ldots\}$
$P=\{2,3,5,7 \ldots\}$
$S=\{4,9,16 \ldots\}$
$T=\{2,12,22 \ldots\}$
（i）$P \cap T=\{2\}$ $\mathrm{n}(P \cap T)=\mathbf{1}$
（ii）$S \cap T=\{ \}$

$$
\begin{aligned}
& \mathrm{n}(A) \text { denotes the number } \\
& \text { of elements in set } A
\end{aligned}
$$ of elements in set A

Answer（b）（i） \qquad
（b）

Elementary Mathematics (4016/01)

12. Topics: Algebra (Algebraic Representation, Formulae)
(a) $A=\frac{1}{2}(3 x+5 x)(h)+(h+2)(5 x)$
$=4 x h+5 x h+10 x$
$=9 x h+10 x$ (Shown) Area of trapezium ($\frac{1}{2} \times$ sum of $/ /$ sides \times height $)+$
(b) $A=9 x h+10 x$ Area of rectangle (length \times breadth)
$A=x(9 h+10)$
$\boldsymbol{x}=\frac{\boldsymbol{A}}{(\boldsymbol{9 h + 1 0})}$

$$
\begin{aligned}
& \text { Answer (a) } A=\frac{1}{2}(3 x+5 x)(h)+(h+2)(5 x) \\
&=4 x h+5 x h+10 x \\
&=9 x h+10 x \\
& \hline
\end{aligned}
$$

Answer (b) $x=$ \qquad [2]
13. Topics: Direct \& Inverse Variation, Percentages

Let s be the speed of the car.

$$
\begin{array}{ll}
D=k s^{2} & \begin{array}{l}
\text { Direct variation: } \\
y \propto x \Rightarrow y=k x
\end{array}
\end{array}
$$

$6=k p^{2}$
$k=\frac{6}{p^{2}}$
$\therefore D=\frac{6 s^{2}}{p^{2}}$
(a) When the speed is increased by 300%,

Initial speed $=p$
Increase in speed $=300 \% \times p$

$$
=3 p
$$

New speed $=$ initial speed + increase in speed

$$
=p+3 p
$$

$$
=4 p
$$

$$
\begin{aligned}
D_{1} & =\frac{6(4 p)^{2}}{p^{2}} \\
& =96
\end{aligned}
$$

(c) Percentage increase $=\frac{96-6}{6} \times 100 \%$
$=1500 \%$
Answer \qquad $\mathrm{m} / \mathrm{s} \quad[1]$
(b)
m [1]
(c) 1500
\% [1]
14. Topic: Statistics (Stem-and-Leaf Diagram, Box-and-Whisker Diagram)
(a) (i) $\mathbf{2 2}$ Modal score $=$ score that appears most frequently
(ii) Median score $=$ average of $8^{\text {th }} \& 9^{\text {th }}$ terms

$$
\begin{align*}
& =\frac{20+21}{2} \\
& =20.5 \tag{1}\\
& \text { Total number of terms }=16 \text { (even) } \\
& \Rightarrow \text { median term }=\text { average of } 2 \text { middle terms }
\end{align*}
$$

\qquad
(ii) 20.5
[1]
(b)

Interquartile range $=$ upper quartile - lower quartile
$=215-120$
$=95$
\qquad g [1]

Elementary Mathematics（4016／01）

15．Topic：Algebra（Factorisation，Expansion）
（a） $2 x^{3}-13 x^{2}+6 x=x\left(2 x^{2}-13 x+6\right)$

$$
\begin{equation*}
=x(2 x-1)(x-6) \tag{2}
\end{equation*}
$$

Answer（a）$x(2 x-1)(x-6)$
（b） $9 a^{2}+1-\left[9 a^{2}-6 a+1\right]=9 a^{2}+1-9 a^{2}+6 a-1$ $=6 a$

Answer
（b）
$6 a$
16．Topic：Angle Properties of Polygons
（a）$\frac{(n-2) 180^{\circ}}{n}=165^{\circ}$ 65°
$65 n$ Each interior \angle of a regular n－sided polygon

$$
=\frac{(n-2) \times 180^{\circ}}{n}
$$

$180 n-165 n=360$

$$
\begin{aligned}
15 n & =360 \\
\boldsymbol{n} & =\mathbf{2 4}
\end{aligned}
$$

（b）Let x be the remaining interior \angle ．

$$
x+6(125)=(7-2) 180
$$

$$
x=150^{\circ}
$$

$$
\begin{array}{llll}
\text { Answer } & \text { (a) } & 24 & {[2]} \\
& \text { (b) } & 150^{\circ} & {[2]}
\end{array}
$$

17．Topic：Factors and Multiples

（a）（i） $1800=\mathbf{2}^{\mathbf{3}} \times \mathbf{3}^{\mathbf{2}} \times \mathbf{5}^{\mathbf{2}}$
（ii）$k=3 \times 5$
$=15$
（iii）$\quad 42=2 \times 3 \times 7$ $\mathrm{HCF}=2 \times 3$
$=6$
（b）

$$
12=2^{2} \times 3
$$

$$
27=3^{3}
$$

$$
90=2 \times 3^{2} \times 5
$$

Question asked for the time， $\mathrm{LCM}=2^{2} \times 3^{3} \times 5$ $=540$
540 seconds $=9 \mathrm{~min}$
They next flash together at 0909

$\operatorname{Answer}(\mathrm{a})(\mathrm{i})$	$2^{3} \times 3^{2} \times 5^{2}$
（ii）$k=\frac{15}{}$	$[1]$
（iii）	$[1]$
（b）	0909

Elementary Mathematics（4016／01）

18．Topics：Linear Inequalities and Simultaneous Equations
（a）（i） $2-2 x>9$

（ii）The greatest integer is $\mathbf{- 4}$ ．

$$
\begin{array}{rll}
\operatorname{Answer}(\mathrm{a})(\mathrm{ii)}) & x & <-3.5 \\
\text { (ii) } & -4 & {[1]}
\end{array}
$$

（b）$x-2 y=8$

$$
\begin{equation*}
x=2 y+8 \tag{1}
\end{equation*}
$$

$3 x=19+4 y$
（2）
Sub（1）into（2），

$$
\begin{aligned}
3(2 y+8) & =19+4 y \\
6 y+24 & =19+4 y \\
2 y & =-5 \\
y & =-\mathbf{2 . 5}
\end{aligned}
$$

Sub $y=-2.5$ into（1），

$$
\begin{aligned}
x & =2(-2.5)+8 \\
& =\mathbf{3}
\end{aligned}
$$

Answer（b） \qquad ［3］

19．Topic：Areas \＆Volumes of Similar Figures

Let h_{1}, A_{1}, V_{1} be the height，surface area and volume，respectively，of the smaller jug．
Let h_{2}, A_{2}, V_{2} be the height，surface area and volume，respectively，of the larger jug．
（a）$\frac{A_{1}}{A_{2}}=\left(\frac{h_{1}}{h_{2}}\right)^{2}$

$$
\frac{h_{1}}{h_{2}}=\sqrt{\frac{45}{125}}
$$

$$
=\frac{3}{5}
$$

（b）$\frac{A_{1}}{A_{2}}=\frac{45}{125}$
$\frac{63}{A_{2}}=\frac{45}{125}$
$A_{2}=175 \mathbf{c m}^{2}$
（c）$\frac{V_{1}}{V_{2}}=\left(\frac{h_{1}}{h_{2}}\right)^{3}$

$$
\begin{aligned}
\frac{V_{1}}{2.5} & =\left(\frac{3}{5}\right)^{3} \quad \text { Using ratio of } \frac{h_{1}}{h_{2}} \text { obtained in (a) } \\
V_{1} & =0.54 l \\
& =\mathbf{5 4 0} \mathbf{c m}^{\mathbf{3}}
\end{aligned}
$$

[^0]［1］

Answer \qquad［2］

Elementary Mathematics (4016/01)

20. Topic: Graphs in Practical Situations
(a) Speed $=20 \div \frac{50}{60}$
$=24 \mathrm{~km} / \mathrm{h}$
(b) He was $\mathbf{4} \mathbf{~ k m}$ from the sports centre.

$$
\begin{array}{lllll}
\text { Answer } & \text { (a) } & 24 & \mathrm{~km} / \mathrm{h} & {[1]} \\
& \text { (b) } & 4 & \mathrm{~km} & {[1]}
\end{array}
$$

(c) (i)

(ii) Brenda passed Alan at 1022 .
Answer(c)(ii)
\qquad 1022

21. Topic: Vectors in Two Dimensions

(a) (i) $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}$

$$
\begin{aligned}
& =-\overrightarrow{O A}+\overrightarrow{O B} \\
& =-3 \mathbf{a}+4 \mathbf{b}
\end{aligned}
$$

(ii) $\overrightarrow{A X}=\frac{3}{4} \overrightarrow{A B}$

$$
=\frac{3}{4}(-3 \mathbf{a}+4 \mathbf{b})
$$

$$
=-\frac{9}{4} \mathbf{a}+3 \mathbf{b}
$$

(iii) $\overrightarrow{O X}=\overrightarrow{O A}+\overrightarrow{A X}$

$$
=3 \mathbf{a}-\frac{9}{4} \mathbf{a}+3 \mathbf{b}
$$

$$
=\frac{3}{4} \mathbf{a}+3 \mathbf{b}
$$

(iv) $\overrightarrow{X Y}=\overrightarrow{X O}+\overrightarrow{O Y}$

$$
=-\overrightarrow{O X}+\overrightarrow{O B}+\overrightarrow{B Y}
$$

$$
=-\overrightarrow{O X}+\overrightarrow{O B}+\frac{1}{3} \overrightarrow{O A}
$$

$$
=-\left(\frac{3}{4} \mathbf{a}+3 \mathbf{b}\right)+4 \mathbf{b}+\frac{1}{3}(3 \mathbf{a})
$$

$$
=\frac{1}{4} \mathbf{a}+\mathbf{b}
$$

(b) $\overrightarrow{O X}=3\left(\frac{1}{4} \mathbf{a}+\mathbf{b}\right)$
$=3 \overrightarrow{X Y}$

$$
\begin{align*}
& \stackrel{\rightharpoonup}{A B}=k \stackrel{\rightharpoonup}{B C} \tag{a+b}\\
& \Rightarrow A, B, C \text { are collinear } \\
& \text { (straight line) }
\end{align*}
$$

$\therefore O, X$ and Y lie in a straight line

$$
\text { Answer(a)(i) } \begin{align*}
\overrightarrow{A B} & =-3 \mathbf{a}+4 \mathbf{b} \\
\text { (ii) } \overrightarrow{A X} & =-\frac{9}{4} \mathbf{a}+3 \mathbf{b} \\
\text { (iii) } \overrightarrow{O X} & =\frac{3}{4} \mathbf{a}+3 \mathbf{b} \tag{1}\\
\text { (iv) } \overrightarrow{X Y} & =\frac{1}{4} \mathbf{a}+\mathbf{b} \tag{1}
\end{align*}
$$

Elementary Mathematics（4016／01）

22．Topic：Graphs
y－intercept：When $x=0, \quad y=0$
$y=x(3-x)$ ：coefficient of x^{2} is -1
\Rightarrow graph takes the shape of \cap（max point）．

（ii）Line of symmetry：

$$
\begin{aligned}
x & =\frac{3-0}{2} \\
& =\mathbf{1 . 5}
\end{aligned}
$$

Answer
（ii） $x=1.5$
（b）（i）x－intercepts：When $y=0$ ，
$(x+2)^{2}-1=0$
$(x+2)^{2}=1$

$$
\begin{aligned}
x+2 & =1 & \text { or } & & x+2 & =-1 \\
x & =-1 & & & x & =-3
\end{aligned}
$$

$$
x=-3
$$

y－intercept：\quad When $x=0$ ，
$y=2^{2}-1$
$y=(x+2)^{2}-1$ ：coefficient of x^{2} is 1
\Rightarrow graph takes the shape of \cup（min point）．
Min point $=(-2,-1)$

$$
\begin{aligned}
& y=(x-h)^{2}+k \\
& \Rightarrow \text { Line of symmetry } x=h \\
& \Rightarrow \text { min } / \text { max point }=(h, k)
\end{aligned}
$$

（ii）Coordinates of $\min \mathrm{pt}=(\mathbf{- 2 , - 1})$
（ii） \qquad ［1］

Elementary Mathematics（4016／01）

23．Topics：Bearings and Geometrical Constructions
（a）Bearing of C from $A=\mathbf{1 1 6}^{\circ}$
Answer
（a）
116°
［1］
（d）Given $A B=60 \mathrm{~km}$
Scale： 6 cm ： 60 km
1 cm ： 10 km
$D M=8.35 \mathrm{~cm}$
Measured on actual question paper

Answer（b）and（c）

[^0]: 1 litre $=1000 \mathrm{~cm}^{3}$

