MATHEMATICS（H2）

Paper 2 Suggested Solutions
1．Topic：Complex Numbers（Complex Roots of Quadratic Equations）
（i）$x^{2}-6 x+34=0$

$$
\begin{aligned}
x & =\frac{6 \pm \sqrt{36-4(34)}}{2} \\
& =\frac{6 \pm \sqrt{-100}}{2} \\
& =\frac{6 \pm 10 \sqrt{-1}}{2} \quad \sqrt{-1}=\mathrm{i} \\
& =\frac{6 \pm 10 \mathrm{i}}{2} \\
& =3 \pm 5 \mathrm{i}
\end{aligned}
$$

$\therefore 3+5 \mathrm{i}$ and $3-5 \mathrm{i}$ are the solutions．
（ii）$x^{4}+4 x^{3}+x^{2}+a x+b=0$ \qquad
Since $x=-2+\mathrm{i}$ is a root，by Factor Theorem，

$$
\begin{array}{rll}
(-2+\mathrm{i})^{4}+4(-2+\mathrm{i})^{3}+(-2+\mathrm{i})^{2}+a(-2+\mathrm{i})+b & =0 \\
-7-24 \mathrm{i}+4(-2+11 \mathrm{i})+3-4 \mathrm{i}-2 a+a \mathrm{i}+b & =0 & \begin{array}{l}
\text { Factor Theorem: } \\
x-a \text { is a factor of } \\
-7-24 \mathrm{i}-8+44 \mathrm{i}+3-4 \mathrm{i}-2 a+a \mathrm{i}+b
\end{array}=0 \\
-12-2 a+b+(16+a) \mathrm{i}=0 &
\end{array}
$$

9740／02
October／November 2010

Since $x=-2+\mathrm{i}$ is a root and the coefficient of each term in（1）is real，then by Complex Conjugate Root Theorem，$x=-2-\mathrm{i}$ is also a root．

$$
\begin{aligned}
\Rightarrow[x-(-2+\mathrm{i})][x-(-2-\mathrm{i})] & =(x+2-\mathrm{i})(x+2+\mathrm{i}) \\
& =(x+2)^{2}-\mathrm{i}^{2} \\
& =x^{2}+4 x+4+1 \\
& =x^{2}+4 x+5 \\
\text { Factorizing }(1), & \\
x^{4}+4 x^{3}+x^{2}-16 x-20 & =0 \\
\left(x^{2}+4 x+5\right)\left(x^{2}-4\right) & =0 \\
\left(x^{2}+4 x+5\right)(x-2)(x+2) & =0 \\
x & =-2+\mathrm{i},-2-\mathrm{i}, 2,-2
\end{aligned}
$$

\therefore The other roots are－2－i，－2 and 2 ．
2．Topic：Series（Mathematical Induction，Method of Difference）
（i）Let P_{n} be the statement
$\sum_{r=1}^{n} r(r+2)=\frac{1}{6} n(n+1)(2 n+7), n \in \mathbb{Z}^{+}$.
When $n=1$ ，

$$
\begin{aligned}
\text { L.H.S. } & =\sum_{r=1}^{1} r(r+2) \\
& =1(1+2) \\
& =3 \\
\text { R.H.S. } & =\frac{1}{6}(1)(1+1)(2+7) \\
& =\frac{2 \times 9}{6} \\
& =3
\end{aligned}
$$

L．H．S．$=$ R．H．S．
\therefore Since L．H．S．$=$ R．H．S．， P_{1} is true

Assume P_{k} is true for some $k \in \mathbb{Z}^{+}$i．e．

$$
\sum_{r=1}^{k} r(r+2)=\frac{1}{6} k(k+1)(2 k+7)
$$

To show that P_{k+1} is also true i．e．

$$
\begin{aligned}
& \sum_{r=1}^{k+1} r(r+2)=\frac{1}{6}(k+1)(k+2)[2(k+1)+7], \\
& \text { L. H. S. }=\sum_{r=1}^{k+1} r(r+2) \\
&=\sum_{r=1}^{k} r(r+2)+(k+1)(k+3) \\
&=\frac{1}{6} k(k+1)(2 k+7)+(k+1)(k+3) \\
&=\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6 k+18\right] \\
& \text { Bring out common } \\
& \text { factor } \frac{1}{6}(k+1) \text { since it }=\frac{1}{6}(k+1)\left[2 k^{2}+13 k+18\right] \\
& \text { appears on RHS. }=\frac{1}{6}(k+1)(2 k+9)(k+2) \\
&=\frac{1}{6}(k+1)(k+2)[2(k+1)+7] \\
&=\text { R. H.S. }
\end{aligned}
$$

\therefore Since L．H．S．$=$ R．H．S．， P_{k+1} is true if P_{k} is true．
Since P_{1} is true and P_{k+1} if P_{k} is true，P_{n} is true $\forall n \geq 1, n \in \mathbb{Z}^{+}$by mathematical induction．

$$
\begin{aligned}
& \text { From MF15: Partial fractions decomposition } \\
& \text { (Non-repeated linear factors): } \\
& \frac{p x+q}{(a x+b)(c x+d)}=\frac{A}{(a x+b)}+\frac{B}{(c x+d)}
\end{aligned}
$$

（ii）（a）Let $\frac{1}{r(r+2)}=\frac{A}{r}+\frac{B}{r+2} \Rightarrow A(r+2)+B r=1$

$$
r=0 \Rightarrow 2 A=1 \quad \Rightarrow A=\frac{1}{2}
$$

$$
\begin{gathered}
r=-2 \\
1
\end{gathered} \Rightarrow-2 B=1 \Rightarrow B=-\frac{1}{2}
$$

$$
\Rightarrow \frac{1}{r(r+2)}=\frac{1}{2 r}-\frac{1}{2(r+2)} \quad \begin{aligned}
& \text { Cover-up Rule may be used } \\
& \text { directly to save time. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{r=1}^{n} \frac{1}{r(r+2)}=\sum_{r=1}^{n}\left[\frac{1}{2 r}-\frac{1}{2(r+2)}\right] \\
& =\frac{1}{2}\left[\sum_{r=1}^{n}\left[\frac{1}{r}-\frac{1}{(r+2)}\right]\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & \frac{1}{3} \\
1
\end{array}\right] \\
& =+\frac{1}{2} \\
& = \\
& = \\
& =\frac{1}{n-2} \\
& \left.=+\frac{1}{n}-\frac{1}{n+2}\right] \\
& =\frac{1}{2}\left[1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right] \\
& =\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}(\text { shown }) \\
& \text { (b) } \sum_{r=1}^{\infty} \frac{1}{r(r+2)}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left[\frac{1}{r(r+2)}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}\right] \\
& \text { As } n \rightarrow \infty, \frac{1}{2(n+1)} \rightarrow 0 \text { and } \frac{1}{2(n+2)} \rightarrow 0 \\
& \Rightarrow \quad \lim _{n \rightarrow \infty}\left[\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}\right]=\frac{3}{4}-0-0=\frac{3}{4} \\
& \therefore \sum_{r=1}^{\infty} \frac{1}{r(r+2)}=\frac{3}{4}
\end{aligned}
$$

Since it converges to a constant value（with a sum to infinity of $\frac{3}{4}$ ）， this is a convergent series．
3. Topic: Differentiation
(i) Given $y=x \sqrt{x+2}$

$$
\begin{array}{rlrl}
& =x(x+2)^{\frac{1}{2}} & \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =(x+2)^{\frac{1}{2}}+x\left(\frac{1}{2}\right)(x+2)^{-\frac{1}{2}} & & \text { Product Rule: } \\
& =\sqrt{x+2}+\frac{x}{2 \sqrt{x+2}} & & \frac{\mathrm{~d}}{\mathrm{~d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
\end{array}
$$

$$
=\frac{2(x+2)+x}{2 \sqrt{x+2}}
$$

$$
=\frac{3 x+4}{2 \sqrt{x+2}}
$$

$$
\text { When } \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

$$
\frac{3 x+4}{2 \sqrt{x+2}}=0
$$

$$
x=-\frac{4}{3}
$$

\therefore There is only one stationary point when $x=-\frac{4}{3}$.
(ii) (a)

$$
\text { Given } \begin{aligned}
y^{2} & =x^{2}(x+2) \\
y & = \pm x \sqrt{x+2}
\end{aligned}
$$

From Part (i), we have

$$
\text { When } x=0, \quad \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & = \pm \frac{3 x+4}{2 \sqrt{x+2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & = \pm \frac{4}{2 \sqrt{2}} \\
& = \pm \frac{2}{\sqrt{2}} \\
& = \pm \sqrt{2}
\end{aligned}
$$

\therefore Possible values of the gradient is $\sqrt{2}$ and $-\sqrt{2}$.
(b) Using G. C. (refer to Appendix for detailed steps),

TI-84 Plus

version 2.1
（iii）Using G．C．（refer to Appendix for detailed steps），

4．Topic：Functions
（i）Using G．C．（refer to Appendix for detailed steps），

Floti Flotz Flots
$Y_{1} ⿴ \frac{1}{x^{2}-1}$
$V_{z}=$
$V_{4}=$
$y_{5}=$

TI－84 Plus fx－9860G
When $x=0, y=-1$

（ii）For the function f^{-1} to exist， f must be one－one over the given domain，where there exists only one value of x for each image of f ． From the sketch in Part（i）， f is one－one when $x \geq 0, x \neq 1$ ． Hence the least value of \boldsymbol{k} is $\mathbf{0}$ ．

（iii） $\mathrm{fg}(x)=\mathrm{f}[g(x)]=\mathrm{f}\left(\frac{1}{x-3}\right)$

$$
=\frac{1}{\frac{1}{(x-3)^{2}}-1}
$$

$$
=\frac{(x-3)^{2}}{1-(x-3)^{2}}
$$

$$
=\frac{(x-3)^{2}}{1-\left(x^{2}-6 x+9\right)}
$$

$$
=\frac{(x-3)^{2}}{-x^{2}+6 x-8}
$$

$$
=\frac{(x-3)^{2}}{(4-x)(x-2)}(\operatorname{shown})
$$

（iv）

$$
\begin{aligned}
\operatorname{fg}(x) & >0 \\
\frac{(x-3)^{2}}{(4-x)(x-2)} & >0
\end{aligned}
$$

Since $(x-3)^{2} \geq 0,(4-x)(x-2)$ must be positive，
By number line：

$\therefore 2<x<4, x \neq 3$

ALTERNATIVE APPROACH

Using G．C．to plot $\mathrm{fg}(x)$（refer to Appendix for detailed steps），

From the graph， $\mathbf{2}<\boldsymbol{x}<\mathbf{4}, \boldsymbol{x} \neq \mathbf{3}$ for $\mathrm{fg}(x)>0$
（v）Given $\mathrm{g}(x)=\frac{1}{(x-3)}, x \in \mathbb{R}, x \neq 2, x \neq 3, x \neq 4$ ．From graph of $\mathrm{g}(x)$ ，
$\mathrm{R}_{\mathrm{g}}=(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)$.
\Rightarrow When $\mathrm{D}_{\mathrm{f}}=(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)$

$$
\mathrm{R}_{\mathrm{f}}=(-\infty,-1) \cup(0, \infty)(\text { from graph in }(\mathrm{i}))
$$

\therefore Range of $\mathrm{fg}(x)=(-\infty,-1) \cup(0, \infty)$

ALTERNATIVE APPROACH
From the graph sketched in part（iv），range of $\mathrm{fg}(\boldsymbol{x})=(-\infty,-1) \cup(0, \infty)$ ．

5．Topic：Sampling

（i）Due to the great cultural and regional variety of the international spectators，it would be difficult to divide them into appropriate the strata for a suitable analysis．
Moreover，given the large size，multinational and mobile nature of the population of spectators，it will be tedious and time－consuming to accurately obtain the required representative sample 1% of spectators in each stratum．
（ii）A systematic sample of 1% of the spectators could be obtained by first randomly interviewing a person leaving the premise of the catering facilities，and thereafter interviewing every $100^{\text {th }}$ person leaving the premise of the catering facilities．

Stratified Sampling：

Divide population into mutually－exclusive subgroups（strata），and then apply random or systematic sampling within each subgroup．

Systematic Sampling：

To obtain a systematic sample of size n from a population of size N ，pick a random element

6．Topic：Hypothesis Testing

$$
\text { Given: } \begin{aligned}
n & =11 \\
\sum t & =454.3 \\
\sum t^{2} & =18778.43
\end{aligned}
$$

Unbiased estimate of population mean， $\bar{t}=\frac{\sum t}{n}$

$$
\begin{gathered}
n \\
=\frac{454.3}{11} \\
=\mathbf{4 1 . 3}
\end{gathered}
$$

Unbiased estimate of population variance， $\mathrm{s}^{2}=\frac{1}{n-1}\left[\sum t^{2}-\frac{\left(\sum t\right)^{2}}{n}\right]$
From MF15

$$
\begin{aligned}
& =\frac{1}{10}\left[18778.43-\frac{(454.3)^{2}}{11}\right] \\
& \approx \mathbf{1 . 5 8 4}
\end{aligned}
$$

Let μ be the mean time required by an employee to complete a task．
To test $\mathrm{H}_{0}: \mu=42.0$ against

$$
\mathrm{H}_{1}: \mu \neq 42.0 \text { at } 10 \% \text { of significance }
$$

Reject H_{0} if p－value <0.10 ．
Applying t－test with $\bar{t}=41.3, n=11, \mathrm{~s}^{2}=1.584$ using G．C．（refer to Appendix for detailed steps），

From GC，the p－value $=0.09487<0.10$ ，we reject H_{0} ．
Hence，there is sufficient evidence at the 10% significance level that there has been a change in the mean time required by an employee to complete the task．

7. Topic: Probability

Given $\mathrm{P}(A)=0.7, \mathrm{P}(B)=0.6, \mathrm{P}\left(A \mid B^{\prime}\right)=0.8$
(i) $\mathrm{P}\left(A \mid B^{\prime}\right)=0.8$
$\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}=0.8$
$\mathrm{P}\left(A \cap B^{\prime}\right)=0.8 \times \mathrm{P}\left(B^{\prime}\right)$

$$
=0.8 \times[1-\mathrm{P}(B)]
$$

$$
=0.32
$$

(ii) $\mathrm{P}(A \cup B)=\mathrm{P}\left(A \cap B^{\prime}\right)+\mathrm{P}(B)$

$$
=0.32+0.6
$$

$$
=0.92
$$

(iii) $\mathrm{P}\left(B^{\prime} \mid A\right)=\frac{\mathrm{P}\left(B^{\prime} \cap A\right)}{\mathrm{P}(A)}$

$$
=\frac{0.32}{0.7}
$$

$$
=\frac{16}{35}
$$

Given $\mathrm{P}(C)=0.5$ and A and C are independent.
(iv) $\mathrm{P}\left(A^{\prime} \cap C\right)=\mathrm{P}(C)-\mathrm{P}(A \cap C)$
$=\mathrm{P}(C)-\mathrm{P}(A) \mathrm{P}(C)$
A and C are independent
$=0.5-0.7 \times 0.5$
$=0.15$

$$
\begin{aligned}
& \text { Note: This also means } \\
& \begin{array}{c}
\mathrm{P}(C)-\mathrm{P}(A) \mathrm{P}(C)=[1-\mathrm{P}(A)] \mathrm{P}(C) \\
\Rightarrow \mathrm{P}\left(A^{\prime} \cap C\right)=\mathrm{P}\left(A^{\prime}\right) \mathrm{P}(C)
\end{array}
\end{aligned}
$$

(v) $\operatorname{Max} \mathrm{P}\left(A^{\prime} \cap B \cap C\right)$ case $(C$ subset of $B)$:

When $C \subseteq B \Rightarrow A^{\prime} \cap B \cap C \subseteq A^{\prime} \cap C$

$$
\begin{aligned}
\therefore \mathrm{P}\left(A^{\prime} \cap B \cap C\right) & \leq \mathrm{P}\left(A^{\prime} \cap C\right) \\
\mathrm{P}\left(A^{\prime} \cap B \cap C\right) & \leq 0.15
\end{aligned}
$$

$\mathrm{P}\left(A^{\prime} \cap C\right)=0.15$

Min $\mathrm{P}\left(A^{\prime} \cap B \cap C\right)$ case (minimal intersection between B and C):

$$
\begin{aligned}
\mathrm{P}(A \cup B \cup C) & \leq 1 \\
\mathrm{P}(A \cup B)+\mathrm{P}\left(A^{\prime} \cup B^{\prime} \cap C\right) & \leq 1 \\
\mathrm{P}(A \cup B)+\left[\mathrm{P}\left(A^{\prime} \cap C\right)-\mathrm{P}\left(A^{\prime} \cap B \cap C\right)\right] & \leq 1 \\
0.92+0.15-\mathrm{P}\left(A^{\prime} \cap B \cap C\right) & \leq 1
\end{aligned}
$$

This is just a 1 -mark question. It should be sufficient to state either $\mathrm{P}\left(A^{\prime} \cap B \cap C\right) \leq 0.15$ or $\mathrm{P}\left(A^{\prime} \cap B \cap C\right) \geq 0.07$.

$$
\mathrm{P}\left(A^{\prime} \cap B \cap C\right) \geq 0.92+0.15-1
$$

$$
\mathrm{P}\left(A^{\prime} \cap B \cap C\right) \geq 0.07
$$

$\therefore 0.07 \leq \mathrm{P}\left(A^{\prime} \cap B \cap C\right) \leq 0.15$
8. Topic: Probability
(i)

$1^{\text {st }}$ digit	$2^{\text {nd }}$ digit	$3^{\text {rd }}$ digit	$4^{\text {th }}$ digit	$5^{\text {th }}$ digit
3 ways (i.e. $3,4,5$)	4 ways	3 ways	2 ways	1 way

P (number is greater than 30,000$)=\frac{3 \times 4!}{5!}=\frac{3}{5}$
(ii)

$$
\mathrm{P}(A)=\frac{\text { no.of ways for event } A \text { to occur }}{\text { total no.of possible outcomes }}
$$

$1^{\text {st }}$ digit	$2^{\text {nd }}$ digit	$3^{\text {rd }}$ digit	$4^{\text {th }}$ digit	$5^{\text {th }}$ digit
3 ways (i.e. $1,3,5)$	2 ways	1 way	2 ways (i.e. 2, 4)	1 way (i.e. 4 or 2)

$P($ last 2 digits are both even $)=\frac{3!\times 2!}{5!}=\frac{\mathbf{1}}{\mathbf{1 0}}$
(iii) Case 1 ($1^{\text {st }}$ digit is 3 or 5$)$:

$1^{\text {st }}$ digit	$2^{\text {nd }}$ digit	$3^{\text {rd }}$ digit	$4^{\text {th }}$ digit	$5^{\text {th }}$ digit
2 ways (i.e. 3,5)	3 ways	2 ways	1 way	2 ways (i.e. 1,5 or 3)

Case 2 ($1^{\text {st }}$ digit is 4):

$1^{\text {st }}$ digit	$2^{\text {nd }}$ digit	$3^{\text {rd }}$ digit	$4^{\text {th }}$ digit	$5^{\text {th }}$ digit
1 way (i.e. 4)	3 ways	2 ways	1 way	3 ways (i.e. $1,3,5)$

$\mathrm{P}($ number is greater than 30,000 and odd $)=\frac{2 \times 3!\times 2+1 \times 3!\times 3}{5!}$
$=0.35$

9. Topic: Normal Distribution

Let X and Y be the random variables such that Ken makes X minutes of peak-rate and Y minutes of cheap-rate telephone calls, respectively, over a 3-month period. Given $\quad X \sim \mathrm{~N}\left(180,30^{2}\right) \quad Y \sim \mathrm{~N}\left(400,60^{2}\right)$
(i) $\mathrm{E}(Y-2 X)=\mathrm{E}(Y)-2 \mathrm{E}(X)=400-2(180)=40$ $\operatorname{Var}(Y-2 X)=\operatorname{Var}(Y)+2^{2} \operatorname{Var}(X)=60^{2}+4 \times 30^{2}=7200$

$$
\therefore Y-2 X \sim \mathrm{~N}(40,7200)
$$

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

If $X \sim \mathrm{~N}\left(\mu_{X}, \sigma_{X}{ }^{2}\right)$ and $Y \sim \mathrm{~N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$ are two independent normal distributions, $a X \pm b Y \sim \mathrm{~N}\left(a \mu_{X} \pm b \mu_{Y}, a^{2} \sigma_{X}{ }^{2}+b^{2} \sigma_{Y}{ }^{2}\right)$
hormalcdf(a, $\mathrm{E99}$
$40,5(72019) 6469$

TI-84 Plus

fx-9860G

$$
\mathrm{P}(Y>2 X)=\mathrm{P}(Y-2 X>0)=0.68132 \approx \mathbf{0 . 6 8 1} \text { (3 sig.fig.) }
$$

(ii) Let T be the random variable for the total cost (in dollars) of Ken's calls made over a three-month period $\quad \Rightarrow \quad T=0.12 X+0.05 Y$

$$
\begin{aligned}
\mathrm{E}(T)=\mathrm{E}(0.12 X+0.05 Y) & =0.12 \mathrm{E}(X)+0.05 \mathrm{E}(Y) \\
& =0.12(180)+0.05(400) \\
& =41.6 \\
\operatorname{Var}(T)=\operatorname{Var}(0.12 X+0.05 Y) & =0.12^{2} \operatorname{Var}(X)+0.05^{2} \operatorname{Var}(Y) \\
& =\underbrace{0.12^{2} \times 30^{2}+0.05^{2} \times 60^{2}} \\
& =21.96
\end{aligned}
$$

$$
\therefore T \sim \mathrm{~N}(41.6,21.96)
$$

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

TI-84 Plus

fx-9860G
$\mathrm{P}(T>45)=0.23406 \approx \mathbf{0 . 2 3 4}$ (3 sig.fig)
(iii) Let W be the random variable for the total cost (in dollars) of Ken's peakrate calls made over two three-month periods (X_{1} and X_{2} being the number of peak-rates calls in each period, respectively)

$$
\begin{aligned}
& \Rightarrow \quad W=0.12 X_{1}+0.12 X_{2} \\
& \mathrm{E}(W)=2(0.12) \mathrm{E}(X) \\
&=43.2 \\
& \operatorname{Var}(W)=2\left(0.12^{2}\right) \operatorname{Var}(X) \\
&=25.92 \\
& \therefore W \sim \mathrm{~N}(43.2,25.92)
\end{aligned}
$$

If X_{1} and X_{2} are two independent observations of the random variable X where $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$,
$a X_{1}+a X_{2} \sim \mathrm{~N}\left(2 a \mu, 2 a^{2} \sigma^{2}\right)$

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

TI-84 Plus
fx-9860G
$\mathrm{P}(W>45)=0.36183 \approx 0.362$ ($\mathbf{3}$ sig.fig)

10. Topic: Correlation and Regression
(i) Using G. C. (refer to Appendix for detailed steps),

TI-84 Plus

(ii) (a) For $F=a+b v$, using G. C. (refer to Appendix for detailed steps)

TI-84 Plus
$f x-9860 G$

$$
r=0.98602 \approx \mathbf{0 . 9 8 6 0} \text { (4 decimal places) }
$$

(b) For $F=c+d v^{2}$, using G. C. (refer to Appendix for detailed steps)

$r=0.99068 \approx \mathbf{0 . 9 9 0 7}$ (4 decimal places)
(iii) Since the scatter diagram reveals a non-linear relationship between F and v in part (i) and the correlation coefficient between v^{2} and F yields a higher value of 0.9907 (as compared to 0.9860 for v and F) in part (ii), $F=c+d v^{2}$ is a better model.
(iv) Sub $\mathrm{a}=0.02424$ and $b=3.1957$ obtained by G. C. in part (ii)(b) into d and c respectively in $F=c+d \nu^{2}$,
\Rightarrow Required equation $\boldsymbol{F}=\mathbf{3 . 1 9 5 7}+\mathbf{0 . 0 2 4 2 4} \boldsymbol{v}^{\mathbf{2}}$
Sub $F=26.0$,

$$
\begin{aligned}
26.0 & =3.1957+0.02424 v^{2} \quad \text { Note: } \operatorname{Reg}(a x+b) \text { used in G. C. } \\
v & =\mathbf{3 0 . 7} \quad
\end{aligned}
$$

As the wind speed is controlled, v is the independent variable and we are using the regression line F on v^{2} to predict \boldsymbol{v}.

Since F is not the independent variable, we should not use the regression line of \boldsymbol{v} on \boldsymbol{F} or \boldsymbol{v}^{2} on \boldsymbol{F} to estimate \boldsymbol{v}.
11. Topic: Binomial, Poisson Distributions\& Their Normal Approximation

Let X be the random variable for the number of calls received in one minute. $X \sim \operatorname{Po}(3)$.
(i) Let X_{4} be the random variable for the number of telephone calls received in a period of 4 minutes.

$$
\Rightarrow \quad X_{4}=4 X \sim \operatorname{Po}(4 \times 3) \Rightarrow X_{4} \sim \operatorname{Po}(12)
$$

Using G. C. (refer to Appendix for detailed steps),
Foissonfdf(12,8)
.0655232849
.0655232849

TI-84 Plus

fx-9860G
$\mathrm{P}\left(X_{4}=8\right)=0.06552 \approx \mathbf{0 . 0 6 5 5}$ ($\mathbf{3}$ sig.fig)

$$
\begin{aligned}
& \text { Additive Property of } \\
& \text { Poisson Distributions: } \\
& \sum_{i=1}^{n} X_{i} \sim \operatorname{Po}\left(\sum_{i=1}^{n} \lambda_{i}\right)
\end{aligned}
$$

or tuition, exam papers \& Last-Minute Budaha Foot Hugging Syndrome treatment
+65 93805290 / missloi@exampaper.com.sg unw.exampaper.com.sg
（ii）Let n be the number of minutes and X_{n} be the random variable for the number of telephone calls received in a period of n minutes．

$X_{n} \sim \operatorname{Po}(3 n)$			
$\mathrm{P}\left(X_{n}=0\right)$	$=0.2$		
$\mathrm{e}^{-3 n} \frac{(3 n)^{0}}{0!}$	$=0.2$		Probability density function of X,
Note： $0!=1!$	$\mathrm{e}^{-3 n}$	$=0.2$	
$-3 n$	$=\ln 0.2$		$\mathrm{P}(X=x)=\mathrm{e}^{-\lambda} \cdot \frac{\lambda^{x}}{r^{\prime}}$
n	$=-\frac{1}{3} \ln 0.2$		
	$=0.53648$ mins		
	$=32.188$ seconds $\approx \mathbf{3 2}$ seconds（nearest second）		

（iii） $12 \mathrm{hrs}=12 \times 60=720 \mathrm{~min}$
Let X_{720} be the random variable for the number of telephone calls received in 720 min ．

$$
\Rightarrow \quad X_{720}=720 X \sim \operatorname{Po}(720 \times 3) \Rightarrow X_{720} \sim \operatorname{Po}(2160)
$$

Additive Property of
Poisson Distributions
（iv）Let Y be the random variable for the number of busy working days out of 6 working days．

Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

fx－9860G
$\mathrm{P}(Y=2)=0.23537 \approx \mathbf{0 . 2 3 5}$（3 sig．fig）

Since λ is large (>10) ，we use a normal distribution to approximate the Poisson distribution as follows

$$
\therefore X_{720} \sim \mathrm{~N}(2160,2160) \text { approximately. }
$$

When $\lambda>10$ ， $X \sim \operatorname{Po}(\lambda) \approx \mathrm{N}(\lambda, \lambda)$
$\mathrm{P}\left(X_{720}>2200\right) \rightarrow \mathrm{P}\left(X_{720}>2200.5\right)$ by continuity correction Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

fx－9860G
$\mathrm{P}\left(X_{720}>2200.5\right)=0.19176 \approx \mathbf{0 . 1 9 2}$（3 sig．fig）

Approximating a discrete distribution with a continuous distribution by Continuity Correction：
$\mathrm{P}_{\text {discrete }}(X>x) \rightarrow \mathrm{P}_{\text {continuous }}(X>x+0.5)$

（v）Let W be the random variable for the number of busy working days out of 30
randomly chosen working days．
$W \sim \mathrm{~B}(30,0.19176)$
$n p=30 \times 0.19176=5.7528>5$
$n q=30 \times(1-0.19176)=24.2472>5$
Since $n p>5$ and $n q>5$ ，we use a normal distribution to approximate the Binomial distribution as follows

$$
W \sim \mathrm{~N}(5.7528,5.7528 \times(1-0.19176))
$$

$$
\Rightarrow W \sim \mathrm{~N}(5.7528,4.64964) \text { approximately. }
$$

When n is large and $n p>$
5 and $n q>5$,
$X \sim \mathrm{~N}(n, p) \approx \mathrm{N}(n p, n p q)$
$\mathrm{P}(0 \leq W<10) \rightarrow \mathrm{P}(-0.5<W<9.5)$ by continuity correction．
Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

$\mathrm{P}(-0.5<W<9.5)=0.95700$

$$
f x-9860 G
$$

≈ 0.957（ 3 sig．fig）

Since the number of days cannot be <0 ，it should be $\mathrm{P}(0 \leq X<10)$

Appendix：Detailed G．C．Steps（for those still trapped in G．C．limbo）

Q3（b）（ii），Q3（iii），Q4（i）：Graph Sketching

fx－9860G

Mathematics H1 (9740/02)

Q6: Hypothesis Testing (\boldsymbol{t}-Test with Data Summary)

Mathematics H1 (9740/02) vesion 2.1

Q10 (i): Plotting Scatter Diagram

TI-84 Plus	STAT ENTER
	\rightarrowEnter v and F values in L1 and L2 respectively
	\rightarrow Turn On Plot1

Mathematics H1（9740／02）
version 2.1

Q10（ii）（a）：Finding Correlation Coefficient

Q10（ii）（b）：Finding Correlation Coefficient

Mathematics H1 (9740/02)

Q11 (i): Poisson Distribution
TI-84 Plus
2nd
VARS
ALPHA
PRGM
\rightarrow Key in the parameters.

fx-9860G

Q11 (iv): Binomial Distribution

Q9（i－iii），Q11（iii），Q11（v）：Normal Distribution

