

3. Topic: Graphs

(i) $y = \ln(2x - 3) \Rightarrow$ Equation of asymptote: $2x - 3 = 0 \Rightarrow x = \frac{3}{2}$ Using G. C. (refer to Appendix for detailed steps),

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg ff facebook.com/JossSticksTuition T twitter.com/MissLoi

 $= -\frac{1}{(r+1)^2} + c$

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 φ exampaper.com.sg. All rights reserved.

Image: Complexity <t

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition T twitter.com/MissLoi

7.

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition 📮 twitter.com/MissLoi Case 3: 3rd& 1st students pass at 1st attempt

紙

- 8. Topic: Sampling and Hypothesis Testing
 - (i) To obtain a stratified sample of 60 students, we divide the population into the following strata: Year One students, Year Two students and Year Three students.

We then pick random samples of the following sizes within each stratum:

$\frac{1400}{3000} \times 60 = 28 \text{ Year One students}$	Year One: ¹⁴⁰⁰ / ₃₀₀₀ of population
$\frac{900}{3000} \times 60 = 18$ Year Two students	Year Two: $\frac{900}{3000}$ of population
$\frac{700}{3000} \times 60 = 14$ Year Three students	Year Three: $\frac{700}{3000}$ of population

(ii) Stratified sampling provides a more accurate representation of the large and varied student population, since the amount spent may vary according to year. As such, stratified sampling allows data for each year to be examined separately whereas this cannot be achieved with simple random sampling. Unbiased estimate of

(iii) Given
$$\Sigma x = 10450$$
, $\Sigma x^2 = 2.235\ 000$, $n = 50$.
Unbiased estimate of $\mu = \frac{\Sigma x}{2} = \frac{10450}{2} = 209$

population mean,

$$\hat{\mu} = \frac{\sum x}{n}$$

п

Unbiased estimate of μ

Unbiased estima

te of
$$\sigma^2$$
 = $\frac{1}{n-1} \left[\Sigma x^2 - \frac{(\Sigma x)^2}{n} \right]$ Unbiased variance
= $\frac{1}{50-1} \left[2235000 - \frac{(10450)^2}{50} \right]$ Unbiased variance
estimate formulafrom
MF15.

- (iv) 1. By the Central Limit Theorem, we assume that the amount of money spent by a student, X, is normally distributed, since the sample size is sufficiently large ($n \ge 50$).
 - 2. Since σ^2 is not given, we assume that the value of the unbiased estimate of σ^2 computed in (iii) is sufficiently close to the actual population variance.

9. Topic: Binomial Distribution&ItsNormal Approximation

(i) Let X be the random variable for the number of germinating sunflower seeds out of 8 sown, where Distribution:

$$X \sim B(8, 0.7)$$
 Binomial
 $X \sim B(n, p)$

b) where n = no. of trials = 8p =probability of success = 0.7 (given)

Using G. C. (refer to Appendix for detailed steps),

(ii)
$$P(X \ge 6) = 1 - P(X \le 5)$$

Using G. C. to calculate $(X \le 5)$ (refer to Appendix for detailed steps),

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg 🖬 facebook.com/JossSticksTuition 📮 twitter.com/MissLoi

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 **o** exampaper.com.sg. All rights reserved.

Mathematics H1 (8864/01) version 2.1

Let *Y* be the random variable for the number of germinating sunflower seeds out of 60 sown, where *Y* ~B (60, 0.7).

Since n = 60 > 50 and p = 0.7,

$$np = 60 \times 0.7 = 42 > 5$$

$$nq = 60 \times (1 - 0.7) = 18 > 5$$

Since np>5 and nq>5, we use a normal distribution to approximate the binomial distribution with

$$E(Y) = np = 42$$

 $Var(Y) = npq = 60 \times 0.7 \times 0.3 = 12.6$

 \Rightarrow Y ~ N(42, 12.6) approximately

 $P(Y < 40) \rightarrow P(Y < 39.5)$ by continuity correction.

Using G. C. (refer to Appendix for detailed steps),

When *n* is large and *np*>

 $X \sim N(n, p) \approx N(np, npq)$

5 and nq > 5,

Testing for change in

 $\mu \Rightarrow$ Two-tailed test

10. Topic: Hypothesis Testing

Let the random variable X be the mass of a components (in grams), and μ the mean mass, where $X \sim N$ (15, 1.2²).

For a random sample of 80 components, $\bar{X} \sim N\left(15, \frac{1.2^2}{20}\right)$

To test $H_0: \mu = 15$ against

 $H_1: \mu \neq 15$ at 5% of significance

Reject H_0 if *p*-value < 0.05.

Applying *z*-test with $\bar{x} = 15.25$, n = 80, $\sigma = 1.2$ using G. C. (refer to Appendix for detailed steps),

From GC, the *p*-value = 0.0624 > 0.05, we do not reject H_o.

Hence, there is <u>insufficient</u> evidence at the 5% significance level to conclude that the mean mass of the components is <u>not</u> 15 grams.

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg facebook.com/JossSticksTuition T twitter.com/MissLoi Unauthorized copying, resale or distribution prohibited. Copyright © 2010 φ exampaper.com.sg. All rights reserved.

om/MissLoi

Complexity Comple

8/16

(iii) Let *C* be the random variable for the mass of an empty cardboard tube, where $C \sim N(50, 5^2)$.

Let *T* be the random variable for the total mass of a tube containing 12 wrapped sweets.

If $X_1, X_2, X_2, ..., X_n$ are *n*

 σ^2),

independent observations of the normal variable X where $X \sim N(\mu, \mu)$

 $X_1 + X_2 + X_2 + \ldots + X_n \sim N(n\mu, n\sigma^2)$

N.B. *n* is NOT squared for the

variance! This is different from

 $nX \sim N(n\mu, n^2\sigma^2)!$

$$T = S_{1} + S_{2} + \dots + S_{12} + C$$

$$E(T) = E(S_{1} + S_{2} + \dots + S_{12}) + E(C)$$

$$= 12E(S) + E(C)$$

$$= 12 \times 44 + 50 = 578$$

$$Var(T) = Var(S_{1} + S_{2} + \dots + S_{12}) + Var(C)$$

$$= 12Var(S) + Var(C)$$

$$= 12 \times 9.25 + 5^{2} = 136$$

 $T \sim N(578, 136)$

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

- ∴ P (*T*>600)=0.029614 ≈0.0296 (3 sig.fig)
- (iv) Let *Y* be the random variable for the total mass of a tube containing 12 wrapped sweets produced by the rival company, where $Y \sim N(\mu, \sigma^2)$.

Given P (Y<450) = 0.05 and P (Y>550) = 0.08
P
$$\left(Z < \frac{450-\mu}{\sigma}\right)$$
 = 0.05 P $\left(Z > \frac{550-\mu}{\sigma}\right)$ = 0.08

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment +65 93805290 / missloi@exampaper.com.sg www.exampaper.com.sg ff facebook.com/JossSticksTuition T twitter.com/MissLoi

Appendix: Detailed G. C. Steps (for those still trapped in G. C. limbo)

Q3 (i), 5 (ii): Graph Sketching

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 φ exampaper.com.sg. All rights reserved.

10/16

TI-84 Plus	Method I: Using Zero Values of Graphs Y= 2nd TRACE 2 \rightarrow Define approximate left/right bounds of value for 1 st root. \rightarrow Repeat steps for 2 nd root.			$2ero$ $\frac{7}{X=-1.723792}$ $Y=0$ nce we are already in Gra	$\frac{1}{\frac{2ero}{x=.95596605}}$ y=0
	Method II: Using Solver MATH \rightarrow Enter Solver (last item on MATH menu) \rightarrow Enter equation. \rightarrow Enter an approximate value of x (i.e. $x = -1.5$) for 1 st root. \rightarrow Enter an approximate value of x (i.e. $x = 1$) for 2 nd root. ALPHA ENTER	<pre>Image Sector (1997) (199</pre>	EQUATION SOLVER eqn:0=6-4X^3-3X^ 4 4 6-4X^3-3X^4=0 • X= -1.723792185 bound=(-1£99,1 • left-rt=0		6-4X^3-3X^4=0 •X=.95596604812 •bound=(~1£99,1 •left-rt=0
	Method III: Using Poly Root Finder Application APPS → Enter PlySmlt2	APPE ICTIONS 1: Finance 2: Conics 3: Ct19Help 4: Inequalz 3: PlySmlt2 6: Transfrm 3: B ⁻¹ .723792185 x: B ⁻¹ .723792185 x: 2282753598 x: 3282753598 x: 4 = .9559660481 HAINHADELCOEF(STD)	HAIN NEAU E POLY ROOT FINDER 2: SIMULT EQN SOLVER 3: ABOUT 4: POLY HELP 5: SIMULT HELP 6: QUIT POLYSMLT	POLV ROOM PLADER HODE DRDER 123 5678910 ACAL OF FRAC DOMINIE SCIENC DOMINIE SCIENG FLOAT 0123456789 RADIAN DECREE (NATA) (HELP)(DECR	a3 = -4 a2 =0 a1 =0 a0 =6∎

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 o exampaper.com.g. All rights reserved.

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 ϕ exampaper.com.sg. All rights reserved. GCE 'A' Level October/November 2010 Suggested Solutions

Mathematics H1 (8864/01) version 2.1

Q9, Q12(i), (ii), (iii): Normal Distribution

Compiled by

Q10: Hypothesis Testing (z-Test with Data Summary)

Mathematics H1 (8864/01) version 2.1

Q11 (b)(i): Plotting Scatter Diagram

TI-84 Plus	 → Enter xandy values in L1 and L2 respectively 	Implie CALC TESTS L1 L2 L3 2 Implie L3 L3 2 2 Implie L2 L3 2 2 Implie L2 2 L3 2 Implie L3 L3 2 2 Implie L2 L3 2 2 Implie L2 L3 2 2 2 Implie L2 L3 2
	2nd Y= ENTER \rightarrow Turn On Plot1	31711 32016 3031 Plot2 Plot3 12 Plot10ff 07 Off 12:Plot20ff 19 Pe: 20 1/2 12:Plot20ff 31 St:L1 3:Plot30ff Ylist:L1 12:Plot30ff Ylist:L2 12:Plot30ff Ylist:L2 14:Plots0ff Ylist:L2
	ZOOM 9	MEMORY """"""""""""""""""""""""""""""""""""
fx-9860G		MAIN MENU List I List 2 List 3 List 4 KUHHMISTAL PACT SUB List 1 List 2 List 3 List 4 I I

lenn blein blein

Unauthorized copying, resale or distribution prohibited. Copyright © 2010 o exampaper.com.g. All rights reserved.

Mathematics H1 (8864/01) version 2.1

Q11 (b)(ii): Finding Correlation Coefficient

For tuition, exam papers & Last-Minute Buddha Foot Hugging Syndrome treatment

16/16