MATHEMATICS（H1）

Paper 1 Suggested Solutions

1．Topic：Equations \＆Inequalities（Quadratic Roots）

$$
4 x^{2}-2 k x+9=0
$$

For two real distinct roots to exist，discriminant $b^{2}-4 a c>0$ ：

\therefore The set of values of \boldsymbol{k} for the equation to havetwo real and distinct roots is $\{k \in \mathbb{R}: k<-6$ or $k>6\}$

Note：Final answer expressed in set notation as question asks for set of values of k ．

2．Topic：Integration
（i） $\int \mathrm{e}^{1-2 x} \mathrm{~d} x=-\frac{1}{2} \mathrm{e}^{1-2 x}+c \quad \int e^{a x+b}=\frac{1}{a} e^{a x+b}+c$
（ii） $\int \frac{2}{(x+1)^{3}} \mathrm{~d} x=2 \int(x+1)^{-3} \mathrm{~d} x$

$$
\begin{aligned}
& =(2) \frac{(x+1)^{-2}}{-2}+c \quad \int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c \\
& =-\frac{1}{(x+1)^{2}}+c
\end{aligned}
$$

8864／01
October／November 2010

3．Topic：Graphs

（i）$y=\ln (2 x-3) \Rightarrow$ Equation of asymptote： $2 x-3=0 \Rightarrow x=\frac{3}{2}$ Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

fx－9860G

（ii）

$$
\begin{array}{rlrl}
y & =\ln (2 x-3) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{2}{2 x-3} & \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (a x+b)=\frac{a}{a x+b}
\end{array}
$$

（iii）When $x=3$ ，

$$
\begin{array}{rlrl}
y & =\ln [2(3)-3] & & =\ln 3 \\
\text { Gradient of tangent, } m_{\mathrm{T}} & =\frac{2}{2(3)-3}=\frac{2}{3} & & \text { Sub } x=3 \operatorname{into} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\Rightarrow \text { Gradient of normal, } m_{\mathrm{N}} & =-\frac{1}{m_{T}}=-\frac{3}{2} & & \text { obtained in (ii). } \\
\therefore \text { Equation of normal: } & & \\
y-\ln 3 & =-\frac{3}{2}(x-3) & & \text { Equation of straight line with } \\
2 y-2 \ln 3 & =-3 x+9 & & \text { gradient } m \text { passing through }\left(x_{1}, y_{1}\right): \\
\mathbf{3 x + 2 y} & =\mathbf{9 + 2 \operatorname { l n } 3} & & y-y_{1}=m\left(x-x_{1}\right)
\end{array}
$$

4．Topic：Differentiation（Maxima \＆Minima）
（i）Given $A B=2 x \mathrm{~m}$

$$
\Rightarrow A E=\frac{5}{8} A B=\frac{5}{4} x \mathrm{~m}
$$

Since $A B C D$ is a rectangle，

$$
\begin{aligned}
& \Rightarrow A D=B C \\
& \Rightarrow D C=A B=2 x
\end{aligned}
$$

Given total perimeter $A E B C D A=6 \mathrm{~m}$

$$
\begin{aligned}
A E+E B+B C+C D+A D & =6 \\
\frac{5}{4} x+\frac{5}{4} x+2 A D+2 x & =6 \\
2 A D & =6-\frac{9}{2} x \\
A D & =\left(3-\frac{9}{4} \boldsymbol{x}\right) \mathbf{m} \text { (shown) }
\end{aligned}
$$

Check final answer with G．C．（time permitting）
Second Derivative Test:

Sign of $\frac{\mathbf{d}^{2} y}{d x^{2}}$	Nature of stationary point
-	Maximum
+	Minimum
0	Point of inflexion

5. Topic : Applications of Differentiation \& Integration
(i)

$$
\begin{aligned}
\text { Given } y & =6-4 x^{3}-3 x^{4} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-12 x^{2}-12 x^{3}=-12 x^{2}(1+x)
\end{aligned}
$$

At stationary points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

$$
\begin{array}{rlll}
-12 x^{2}(1+x) & =0 & & \\
x & =0 & \text { or } & \\
y=-1 \\
y & =6 & \text { or } & y=6-4(-1)^{3}-3(-1)^{4}=7
\end{array}
$$ given in coordinates.

(ii) Using G. C. (refer to Appendix for detailed steps),

TI-84 Plus $\quad f x-9860 G$

(iii) Using G. C. (refer to Appendix for detailed steps),

TI-84 Plus

$\therefore x$-coordinates are $\mathbf{- 1 . 7 2}$ (2d.p.) and 0.96 (2d.p.)
(iv) $\int\left(6-4 x^{3}-3 x^{4}\right) \mathrm{d} x=\mathbf{6 x}-\boldsymbol{x}^{4}-\frac{3}{5} \boldsymbol{x}^{5}+\boldsymbol{c}$

$$
\begin{aligned}
\therefore \text { Area } & =\int_{-1}^{\frac{1}{2}}\left(6-4 x^{3}-3 x^{4}\right) \mathrm{d} x \\
& =\left[6 x-x^{4}-\frac{3}{5} x^{5}\right]_{-1}^{\frac{1}{2}} \\
& =\left[6\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)^{4}-\frac{3}{5}\left(\frac{1}{2}\right)^{5}\right]-\left[6(-1)-(-1)^{4}-\frac{3}{5}(-1)^{5}\right] \\
& =9 \frac{51}{160} \text { units }^{2}
\end{aligned}
$$

6．Topic：Probability（Venn Diagram）
（i）

$$
\mathrm{P}(\text { both } A \text { and } B \text { occur })=\mathrm{P}(A \cap B)
$$

$$
\begin{array}{ll}
=\mathrm{P}(A \cap B) & \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \\
=\mathrm{P}(A \mid B) \mathrm{P}(B) &
\end{array}
$$

$$
=0.2 \times 0.3
$$

$$
=0.06
$$

（ii） P （at least one of A and B occurs）$=\mathrm{P}(A \cup B)$

$$
=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

$$
=0.6+0.3-0.06
$$

$$
=0.84
$$

（iii） P （exactly one of A and B occurs）$=\mathrm{P}(A \cup B)-\mathrm{P}(A \cap B)$

$$
=0.84-0.06
$$

$$
=0.78
$$

Venn Diagram（for illustration）：

7．Topic：Probability（Probability Tree）
First attempt Second attempt

（i）$\quad \mathrm{P}$（fails at both attempt）$=0.3 \times 0.1$
$=0.7+0.3 \times 0.9$ from tree diagram
（ii） $\mathrm{P}($ passes the examination $)=1-0.03=0.97$

$$
\begin{aligned}
\mathrm{P}\left(\text { pass at } 2^{\text {nd }} \text { attempt }\right) & =\mathrm{P}\left(\text { fail on } 1^{\text {st }} \text { attempt AND pass at } 2^{\text {nd }} \text { attempt }\right) \\
& =0.3 \times 0.9=0.27
\end{aligned}
$$

P （pass at second attempt｜passes the exam）

（iii） P （two pass at the 1 st attempt and the other passes at $2^{\text {nd }}$ attempt）
$=(0.7 \times 0.7) \times 0.27 \times 3$ cases
$=0.3969$
≈ 0.397（ $\mathbf{3}$ sig．fig．）
3 Possibilities Case 1： $1^{\text {st }} \& 2^{\text {nd }}$ students pass at $1^{\text {st }}$ attempt Case 2： $2^{\text {nd }} \& 3^{\text {rd }}$ students pass at $1^{\text {st }}$ attempt Case $3: 3^{\text {rd }} \& 1^{\text {st }}$ students pass at $1^{\text {st }}$ attempt

8．Topic：Sampling and Hypothesis Testing
（i）To obtain a stratified sample of $\mathbf{6 0}$ students，we divide the population into the following strata：Year One students，Year Two students and Year Three students．

We then pick random samples of the following sizes within each stratum：

$$
\begin{aligned}
& \text { Year One: } \frac{1400}{3000} \text { of population } \\
& \text { Year Two: } \frac{900}{3000} \text { of population } \\
& \text { Year Three: } \frac{700}{3000} \text { of population }
\end{aligned}
$$

（ii）Stratified sampling provides a more accurate representation of the large and varied student population，since the amount spent may vary according to year．As such，stratified sampling allows data for each year to be examined separately whereas this cannot be achieved with simple random sampling．
（iii）Given $\Sigma x=10450, \Sigma x^{2}=2235000, n=50$

$$
\text { Unbiased estimate of } \mu \quad=\frac{\Sigma x}{50}=\frac{10450}{50}=\mathbf{2 0 9}
$$

$$
\text { Unbiased estimate of } \sigma^{2}=\frac{1}{n-1}\left[\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right]
$$

$$
=\frac{1}{50-1}\left[2235000-\frac{(10450)^{2}}{50}\right]
$$

Unbiased estimate of population mean， $\hat{\mu}=\frac{\sum x}{n}$

Unbiased variance estimate formulafrom MF15．

$$
=1039 \frac{39}{49}
$$

（iv）1．By the Central Limit Theorem，we assume that the amount of money spent by a student，X ，is normally distributed，since the sample size is sufficiently large（ $n \geq \mathbf{5 0}$ ）．

2．Since σ^{2} is not given，we assume thatthe value of the unbiased estimate of σ^{2} computed in（iii）is sufficiently close to the actual population variance．

9．Topic：Binomial Distribution\＆ItsNormal Approximation
（i）Let X be the random variable for the number of germinating sunflower seeds out of 8 sown，where

$$
\begin{array}{ll}
X \sim \mathrm{~B}(8,0.7) & \begin{array}{l}
\text { Binomial Distribution: } \\
X \sim \mathrm{~B}(n, p) \text { where } \quad n
\end{array} \\
& =\text { no. of trials }=8 \tag{enc}\\
p & =\text { probability of success } \\
& =0.7 \text { (given) }
\end{array}
$$

Using G．C．（refer to Appendix for detailed steps），

$$
\begin{aligned}
& \text { TI-84 Plus fx-9860G } \\
& \mathrm{P}(X=6)=0.29647 \approx \mathbf{0 . 2 9 6}(\mathbf{3} \text { sig.fig })
\end{aligned} \begin{aligned}
& \text { G. C.'s binomial } \\
& \text { probability (PD) } \\
& \text { function is used. }
\end{aligned}
$$

（ii）$\quad \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)$
Using G．C．to calculateP $(X \leq 5)$（refer to Appendix for detailed steps）， binomedf（8，6．7，5

$$
\begin{array}{cc}
\text { TI-84 Plus } & \boldsymbol{f x} \boldsymbol{x}-9860 \boldsymbol{G} \\
\therefore \mathrm{P}(X \geq 6)=1-0.44823=0.55177 \approx \mathbf{0 . 5 5 2}(\mathbf{3} \mathbf{~ s i g . f i g})
\end{array}
$$

G．C．＇s binomial cumulative probability (CD) function is used．

Let Y be the random variable for the number of germinating sunflower seeds out of 60 sown，where $Y \sim \mathrm{~B}(60,0.7)$ ．

Since $\mathrm{n}=60>50$ and $p=0.7$ ，

$$
\begin{aligned}
& n p=60 \times 0.7=42>5 \\
& n q=60 \times(1-0.7)=18>5
\end{aligned}
$$

Sincenp >5 and $n q>5$ ，we use a normal distribution to approximate the binomial distribution with

$$
\begin{aligned}
\mathrm{E}(Y) & =n p=42 & & \text { When } n \text { is large and } n p> \\
\operatorname{Var}(Y) & =n p q=60 \times 0.7 \times 0.3=\mathbf{1 2 . 6} & & 5 \text { and } n q>5, \\
\Rightarrow \quad Y & \sim \mathrm{~N}(42,12.6) \text { approximately } & & X \sim \mathrm{~N}(n, p) \approx \mathrm{N}(n p, n p q)
\end{aligned}
$$

$$
\mathrm{P}(Y<40) \rightarrow \mathrm{P}(Y<39.5) \text { by continuity correction. }
$$

Using G．C．（refer to Appendix for detailed steps），
$9.5,42,5 \mathrm{CC}(2,69,3$

TI－84 Plus

$$
\therefore \mathrm{P}(Y<40)=\mathrm{P}(Y<39.5) \text { by Continuity Correction }
$$

$$
=0.24062
$$

$$
\approx 0.241(3 \text { sig.fig) }
$$

Approximating a discrete distribution with a continuous distribution by Continuity Correction：

10．Topic：Hypothesis Testing

Let the random variable X be the mass of a components（in grams），and μ the mean mass，where $X \sim \mathrm{~N}\left(15,1.2^{2}\right)$ ．
For a random sample of 80 components， $\bar{X} \sim \mathrm{~N}\left(15, \frac{1.2^{2}}{80}\right)$
To test $\mathrm{H}_{0}: \mu=15$ against

$$
\mathrm{H}_{1}: \mu \neq 15 \text { at } 5 \% \text { of significance }
$$

Testing for change in $\mu \Rightarrow$ Two－tailed test
Reject H_{0} if p－value <0.05 ．
Applying z－test with $\bar{x}=15.25, n=80, \sigma=1.2$ using G．C．（refer to Appendix for detailed steps），

$f x-9860 G$
From GC，the p－value $=\mathbf{0 . 0 6 2 4}>0.05$ ，we do not reject H_{0} ．
Hence，there is insufficient evidence at the 5% significance level to conclude that the mean mass of the components is not $\mathbf{1 5}$ grams．

Under $\mathrm{H}_{0}, \bar{X} \sim \mathrm{~N}\left(15, \frac{1.2^{2}}{80}\right)$
To test $\mathrm{H}_{0}: \mu=15$ against
$\mathrm{H}_{1}: \mu<15$ at 5% of significance
Reject H_{o} if z－value $<z_{0.05}$ ．

To obtain $z_{0.05}$ ，the critical value of z at 5% ，

Testing for decrease in μ i．e． $\mathrm{H}_{1}: \mu<15$ ，the critical region is in the lower tail of the distribution \Rightarrow left－tailed test

11．Topic：Correlation and Regression

（a）（i）Product moment correlation coefficient ≈ 0 \Rightarrow the eight points are randomly distributed with little or no pattern．

Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

fx－9860G

$$
z_{0.05}=-1.64485
$$

For H_{0} to be rejected at 5% level of significance，test statistic

$$
\begin{aligned}
z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\bar{x}-15}{\frac{1.2}{\sqrt{80}}} & <z_{0.05} \\
\frac{\bar{x}-15}{\frac{1.2}{\sqrt{80}}} & <-1.645 \\
\bar{x} & <14.779 \\
\bar{x} & <14.8 \text { grams }
\end{aligned}
$$

\therefore Set of values：$\left\{\overline{\boldsymbol{x}} \in \mathbb{R}^{+}: \overline{\boldsymbol{x}}<14.78\right\}$ \qquad
Note：Final answer expressed in set notation as question asks for set of values．
（ii）Product moment correlation coefficient $\approx=0.8$ \Rightarrow the eight points lie moderately close to a straight line with negative gradient．

（b）（i）Using G．C．（refer to Appendix for detailed steps），

TI－84 Plus

(ii) Using G. C. (refer to Appendix for detailed steps),

$r=0.98729 \approx \mathbf{0 . 9 8 7}$ (3 sig.fig)
(iii) Sub values of a and b obtained by G.C. in part (ii) into m and c respectively $\Rightarrow \boldsymbol{y}=\mathbf{0 . 1 0 6 9 x} \boldsymbol{x} \mathbf{0 . 5 6 1 5}$

Remember to square the standard deviation when calculating the variance!
(iv) When $x=40, y=0.1069(40)+0.5615=4.8375 \approx 4.84$ (3 sig. fig.)
\therefore Estimated monthly earnings of a 40-year-old worker is $\$ 4840$.
Since $x=40$ is within the range of given data values $[18,55]$, the estimate is reliable as we are interpolating within the data range.
(v) m will remain the same and the constant c becomes $(c+N)$.

12. Topic: Normal Distribution

(i) Let U be the random variable for the mass of an unwrapped sweet, where $U \sim \mathrm{~N}\left(40,3^{2}\right)$
Using G. C. (refer to Appendix for steps to access the normal distribution functions),

TI-84 Plus

$$
P(U<36)=0.091211 \approx \mathbf{0 . 0 9 1 2} \text { (3 sig.fig) }
$$

(ii) Let W be the random variable for the mass of a wrapper, where $W \sim \mathrm{~N}\left(4,0.5^{2}\right)$
Let S be the random variable for the mass of a wrapped sweet.

$$
\left.\begin{array}{rl}
\mathrm{E}(S) & =\mathrm{E}(U)+\mathrm{E}(W)=40+4=44 \\
\operatorname{Var}(S) & =\operatorname{Var}(U)+\operatorname{Var}(W)=3^{2}+0.5^{2}=9.25
\end{array}\right\}
$$

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

If $X \sim \mathrm{~N}\left(\mu_{X}, \sigma_{X}{ }^{2}\right)$ and $Y \sim \mathrm{~N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$ are two independent normal distributions,
$X \pm Y \sim \mathrm{~N}\left(\mu_{X} \pm \mu_{Y}, \sigma_{X}{ }^{2}+\sigma_{Y}{ }^{2}\right)$

TI-84 Plus

fx-9860G
$\mathrm{P}(42<S<46)=0.48920 \approx \mathbf{0 . 4 8 9}$ (3 sig.fig)
(iii) Let C be the random variable for the mass of an empty cardboard tube, where $C \sim \mathrm{~N}\left(50,5^{2}\right)$.
Let T be the random variable for the total mass of a tube containing 12 wrapped sweets.

$$
\begin{aligned}
T & =S_{1}+S_{2}+\ldots+S_{12}+C \\
\mathrm{E}(T) & =\mathrm{E}\left(S_{1}+S_{2}+\ldots+S_{12}\right)+\mathrm{E}(C) \\
& =12 \mathrm{E}(S)+\mathrm{E}(C) \\
& =12 \times 44+50=578 \\
\operatorname{Var}(T) & =\operatorname{Var}\left(S_{1}+S_{2}+\ldots+S_{12}\right)+\operatorname{Var}(C) \\
& =12 \operatorname{Var}(S)+\operatorname{Var}(C) \\
& =12 \times 9.25+5^{2}=136 \\
T & \sim \mathrm{~N}(578,136)
\end{aligned}
$$

If $X_{1}, X_{2}, X_{2}, \ldots, X_{n}$ are n independent observations of the normal variable X where $X \sim \mathrm{~N}(\mu$, σ^{2}),
$X_{1}+X_{2}+X_{2}+\ldots+X_{n} \sim \mathrm{~N}\left(n \mu, n \sigma^{2}\right)$
N.B. n is NOT squared for the variance! This is different from $n X \sim \mathrm{~N}\left(n \mu, n^{2} \sigma^{2}\right)$!

Using G. C. (refer to Appendix for steps to access the normal distribution functions),

TI-84 Plus

fx-9860G

Using G. C. (refer to Appendix for detailed steps),
\therefore Mean ≈ 504 and variance ≈ 1080 ($\mathbf{3}$ sig.fig)
inuNorm -1.64485 .5626

TI-84 Plus
invNorm 4.92)
1.465671561

TI-84 Plus

fx-9860G
fx-9860G
$\frac{450-\mu}{\sigma}=-1.64485 \quad \frac{550-\mu}{\sigma}=1.40507$ $\mu=450+1.64485 \sigma \ldots$ (1) $550-\mu=1.40507 \sigma \ldots$ (2)
Sub (1) into (2): $550-450-1.64485 \sigma=1.405076$

$$
\begin{aligned}
\sigma=32.7877 & \Rightarrow \sigma^{2}=1075.0 \approx 1080 \\
& \Rightarrow \mu=503.9309 \approx 504
\end{aligned}
$$

$\therefore \mathrm{P}(T>600)=0.029614 \approx \mathbf{0 . 0 2 9 6}$ (3 sig.fig)
(iv) Let Y be the random variable for the total mass of a tube containing 12 wrapped sweets produced by the rival company, where $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
\text { Given } \mathrm{P}(Y<450) & =0.05 & \text { and } & \mathrm{P}(Y>550) & =0.08 \\
\mathrm{P}\left(Z<\frac{450-\mu}{\sigma}\right) & =0.05 & & \mathrm{P}\left(Z>\frac{550-\mu}{\sigma}\right) & =0.08
\end{aligned}
$$

Appendix：Detailed G．C．Steps（for those still trapped in G．C．limbo）

Q5（iii）：Finding the Roots of a Function

TI－84 Plus Method I：Using Zero Values of Graphs

\rightarrow Define approximate left／right bounds of value for $1^{\text {st }}$ root．
\rightarrow Repeat steps for $2^{\text {nd }}$ root．
Method II：Using Solver
\rightarrow Enter Solver（last item on MATH menu）
\rightarrow Enter equation．
\rightarrow Enter an approximate value of x（i．e．$x=-1.5$ ）for $1^{\text {st }}$ root
\rightarrow Enter an approximate value of x（i．e．$x=1$ ）for $2^{\text {nd }}$ root．

ALPHA ENTER

Method III：Using Poly Root Finder Application

APPS

\rightarrow Enter PlySmlt2

Note：This is the preferred method for Q5（iii）since we are already in Graphing mode having just sketched C in part（ii）．

$f x-9860 G$ Find Roots in Graph

Q9（i）：Binomial Distribution（Computing Probability）

Mathematics H1 (8864/01) vesion 2.1

Q9, Q12(i), (ii), (iii): Normal Distribution

Q10, Q12 (iv): Finding \boldsymbol{z}-value

Mathematics H1（8864／01）vesion 2.1

Q10：Hypothesis Testing（z－Test with Data Summary）

Mathematics H1 (8864/01) vesion 2.1

Q11 (b)(i): Plotting Scatter Diagram

Q11（b）（ii）：Finding Correlation Coefficient

