MATHEMATICS（H2）

Paper 2 Suggested Solutions

1．Topic：Graphing Techniques
C：$\quad x=t^{2}+4 t$
$y=t^{3}+t^{2}$
（i）When $t=-2, x=-4, y=-4$
When $t=0, x=0, y=0$
When $t=1, x=5, y=2$

Floti Flote Fiots	
	Geraph Func ：Param
人2t＝	Ttik（ $\left.\mathrm{T}^{\wedge} 3\right)+\mathrm{T}^{2}$
Yгт＝	रt2：［－］
－3т $=$	XtS：［－］
$\times{ }_{4}^{3 T}=$	WSEL DEL JTPE SSTWL／MMEMIDEAW
TI－84 Plus	Casio fx－9860G

Note：
Under V－Window of Casio GC， set $\mathrm{T}_{\text {min }}=-2$ and $\mathrm{T}_{\text {max }}=1$

9740／02

October／November 2009

$$
\begin{aligned}
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t} \\
& =\frac{3 t^{2}+2 t}{2 t+4}
\end{aligned}
$$

When $t=2$ ，
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3(2)^{2}+2(2)}{2(2)+4}$
$=2$
and $x=12, y=12 \Rightarrow P(12,12)$
\therefore Equation of l ：

$$
\begin{align*}
y-12 & =2(x-12) \\
\boldsymbol{y} & =\mathbf{2 x} \mathbf{- 1 2} . \tag{3}
\end{align*}
$$

（iii）Given tangent l meets at Q ．
Sub（1）and（2）into（3）：
Reject as this
belongs to point P

Using Factor Theorem $(t-2)(t+3)(t-2)=0$

$$
\therefore t=2 \text { (reject) } \quad \text { or } t=-3
$$

\therefore When $t=-3$ ，
$x=(-3)^{2}+4(-3)$

$$
=-3
$$

$y=(-3)^{3}+(-3)^{2}$

$$
=-18
$$

\therefore Coordinates of Q is $(-3,-18)$

2. Topic: Vectors

Given $\overrightarrow{O A}=\mathbf{a}=\left(\begin{array}{l}14 \\ 14 \\ 14\end{array}\right)$ and $\overrightarrow{O B}=\mathbf{b}=\left(\begin{array}{c}11 \\ -13 \\ 2\end{array}\right)$.
(i) Given P divides $A B$ in the ratio $2: 1$ By ratio theorem:

$$
\begin{aligned}
\overrightarrow{O P} & =\frac{1}{3}[\mathbf{a}+2 \mathbf{b}] \\
& =\frac{1}{3}\left[\left(\begin{array}{l}
14 \\
14 \\
14
\end{array}\right)+2\left(\begin{array}{c}
11 \\
-13 \\
2
\end{array}\right)\right] \\
& =\left(\begin{array}{c}
12 \\
-4 \\
6
\end{array}\right)
\end{aligned}
$$

\therefore Coordinates of P is $(\mathbf{1 2 , - 4 , 6)}$
(ii) $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\begin{aligned}
& =\left(\begin{array}{c}
11 \\
-13 \\
2
\end{array}\right)-\left(\begin{array}{l}
14 \\
14 \\
14
\end{array}\right) \\
& =\left(\begin{array}{c}
-3 \\
-27 \\
-12
\end{array}\right) \\
\overrightarrow{A B} \cdot \overrightarrow{O P} & =\left(\begin{array}{c}
-3 \\
-27 \\
-12
\end{array}\right) \cdot\left(\begin{array}{c}
12 \\
-4 \\
6
\end{array}\right) \\
& =-36+108-72 \\
& =0
\end{aligned}
$$

Two non-zero vector \mathbf{a} and \mathbf{b} are \perp if $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos 90^{\circ}=0$
(iii) Given \mathbf{c} is a unit vector of $\overrightarrow{O P}$.

$$
\begin{aligned}
|\overrightarrow{O P}| & =\sqrt{12^{2}+(-4)^{2}+6^{2}} \\
& =14 \\
\therefore \mathbf{c} & =\frac{\overrightarrow{O P}}{|\overrightarrow{O P}|} \\
& =\left(\begin{array}{c}
\frac{12}{14} \\
-\frac{4}{14} \\
\frac{6}{14}
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{6}{7} \\
-\frac{2}{7} \\
\frac{3}{7}
\end{array}\right)
\end{aligned}
$$

The geometrical meaning of $|\mathbf{a} \mathbf{c}|$ is length of projection of \mathbf{a} onto $\overrightarrow{O P}$.
(iv) $\mathbf{a} \times \mathbf{p}=\left(\begin{array}{l}14 \\ 14 \\ 14\end{array}\right) \times\left(\begin{array}{c}12 \\ -4 \\ 6\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{c}
(14 \times 6)+(4 \times 14) \\
-(14 \times 6-14 \times 12) \\
14 \times(-4)-14 \times 12
\end{array}\right) \\
& =\left(\begin{array}{c}
140 \\
84 \\
-224
\end{array}\right)
\end{aligned}
$$

The geometrical meaning of $|\mathbf{a} \times \mathbf{p}|$ is area of parallelogram
$\therefore \overrightarrow{A B} \cdot \overrightarrow{O P}=0 \Rightarrow A B \perp O P$ (Shown)
\therefore Area of $\triangle O A P$
$=\frac{1}{2}|\mathbf{a} \times \mathbf{p}|$
$=\frac{1}{2}\left|\left(\begin{array}{c}140 \\ 84 \\ -224\end{array}\right)\right|$
$=\frac{1}{2} \sqrt{140^{2}+84^{2}+(-224)^{2}}$
$=\frac{1}{2} \sqrt{76832}$
$=98 \sqrt{2}$ units 2
3．Topic：Functions
Given $\mathrm{f}(x)=\frac{a x}{b x-a}$ ，for $x \in \mathbb{R}, x \neq \frac{a}{b}, a b \neq 0$
（i）Let $y=\frac{a x}{b x-a}$ where $y=\mathrm{f}(x)$

$$
b y x-a y=a x
$$

$$
(b y-a) x=a y
$$

$$
x=\frac{a y}{b y-a}
$$

$$
\therefore \mathrm{f}^{-1}(x)=\frac{a x}{b x-a}
$$

$$
\therefore \mathrm{f}^{-1}(x)=\mathrm{f}(x)
$$

$$
\Rightarrow \quad x=\mathrm{f}(\mathrm{f}(x))
$$

$\Rightarrow \quad \mathrm{f}^{2}(x)=x$
\therefore Range of $\mathbf{f}^{2}(x)$ is $\mathbf{R}_{\mathbf{f}^{2}} \in \mathbb{R} /\left\{\frac{a}{b}\right\}$
（ii）Given $\mathrm{g}(x)=\frac{1}{x}$ for $x \in \mathbb{R}, x \neq 0$
$\therefore \mathrm{R}_{\mathrm{g}}=\mathrm{R} /\{0\}$
and $\mathrm{D}_{\mathrm{f}}=\mathrm{R}\left\{\frac{a}{b}\right\}$ where $a, b \neq 0$
\therefore fg does not exist because $R_{g} \nsubseteq D_{f}$
（iii）
From（1），we have $\frac{a x}{b x-a}=x$

$$
\begin{aligned}
\left(\frac{a}{b x-a}-1\right) x & =0 \\
\therefore x=0 \quad \text { or } & \frac{a}{b x-a}-1=0 \\
a & =b x-a \\
x & =\frac{2 a}{b}
\end{aligned}
$$

\therefore The solutions are： $\boldsymbol{x}=\mathbf{0}$ or $\boldsymbol{x}=\frac{2 a}{b}$
4．Topics：Differentiation，Differential Equations
（i）$\frac{\mathrm{d}^{2} n}{\mathrm{~d} t^{2}}=10-6 t$
$\frac{\mathrm{d} n}{\mathrm{~d} t}=10 t-3 t^{2}+c_{1}$ ，where c_{1} is a constant
$n=5 t^{2}-t^{3}+c_{1} t+c_{2}$ ，where c_{2} is a constant
\therefore Given $n=100$ when $t=0$ ，
$100=5(0)-0+c_{1}(0)+c_{2}$
$c_{2}=100$
$\therefore n=5 t^{2}-t^{3}+c_{1} t+100$
When $c_{1}=1, n=5 t^{2}-t^{3}+100+t$ ，turning $\mathrm{pt}=(3.43,122)$
When $c_{1}=0, n=5 t^{2}-t^{3}+100$ ，turning $\mathrm{pt}=(3.33,119)$
When $c_{1}=-1, n=5 t^{2}-t^{3}+100-t$ ，turning $\mathrm{pt}=(3.23,115)$

（ii）Given by $2^{\text {nd }}$ scientist：

$$
\begin{aligned}
\frac{\mathrm{d} n}{\mathrm{~d} t} & =3-0.02 n \\
\int \frac{1}{3-0.02 n} \mathrm{~d} n & =\int \mathrm{d} t \\
\frac{1}{-0.02} \ln |3-0.02 n| & =t+c_{3} \\
\ln |3-0.02 n| & =-0.02 t-0.02 c_{3}, \text { where } c_{3} \text { is a constant } \\
3-0.02 n & =\mathrm{e}^{-0.02 t} \mathrm{e}^{-0.02 c_{3}} \\
0.02 n & =3-\mathrm{e}^{-0.02 t} \mathrm{e}^{-0.02 c_{3}} \\
n & =150-50 \mathrm{e}^{-0.02 t} \mathrm{e}^{-0.02 c_{3}} \\
\boldsymbol{n} & =\mathbf{1 5 0}-\boldsymbol{A} \mathbf{e}^{-0.02 t}, \text { where } A \text { is a constant }
\end{aligned}
$$

The population will eventually increase and remain at 150000 ．

5．Topic：Sampling

A quota sample of 100 cinema－goers may be obtained by instructing the interviewer to conduct the survey with 50 male and 50 female cinema－goers as they leave the cinema．
A disadvantage of this method is the possibility of bias in the selection process， as interviewers may tend to choose the easiest way to fulfill the survey quota eg． selecting those who are more open and the easiest to approach；interviewing couples（with 1 female and 1 male）who may tend to give the same opinion．

6．Topic：Correlation Coefficient and Linear Regression
（i）

TI－84 Plus

(ii) As far as the data in the scatter diagram is concerned, the linear model is appropriate since its calculated value of $r=-0.986$ indicates a strong negative linear correlation.
In the context of the question, however, it is unlikely that the world record will decrease linearly with time since its likely to be increasingly difficult to break it as we approach the limits of our human abilities as time goes by Hence a non-linear model with a negative exponential function may be more appropriate than a linear model.
(iii) A quadratic model (with a minimum point) would not be appropriate since the world record time can only decrease or remain the same as the years go by. Hence there cannot be a portion where t increases as x increases in the long term.
(iv) By generating another list $\Rightarrow \mathrm{L}=\ln t$ and using G.C., we have the line of regression:

$$
\begin{aligned}
\Rightarrow \quad \ln t & =34.853-0.016127 x \\
& \approx 34.9-0.0161 x
\end{aligned}
$$

Coefficient of correlation, $\quad r=-0.99616$

TI-84 Plus

Sub $x=2010, \therefore t=11.447$

Casio fx-9860G

$$
\approx 11.4 \text { (3 sig. fig.) }
$$

\therefore World record time as of $\mathbf{1}^{\text {st }}$ January 2010 is $\mathbf{3}$ minutes $\mathbf{4 1 . 4}$ seconds.
As the 2010 world record time is predicted through extrapolating our data well beyond the year 2000, it is not reliable despite its strong correlation.

7. Topic: Probability, Differentiation

(i) Given $p=25$,

Probability that a randomly chosen component is faulty
$=\mathrm{P}$ (component supplied by A is faulty or component supplied by B is faulty)
$=\mathrm{P}($ component supplied by A is faulty $)+\mathrm{P}($ component supplied by B is faulty)
$=\frac{25}{100} \times 0.05+\frac{75}{100} \times 0.03$
$=0.035$
(ii) For a general value of p,

$$
\begin{aligned}
\mathrm{f}(p) & =\frac{\frac{p}{100} \times 0.05}{\frac{p}{100} \times 0.05+\frac{100-p}{100} \times 0.03} \quad \frac{\mathrm{P}(\text { component supplied by } A \text { is faulty })}{\mathrm{P}(\text { randomly chosen component is faulty })} \\
& =\frac{\frac{p}{100} \times 0.05}{\frac{1}{100}[0.05 p+3-0.03 p]} \\
& =\frac{0.05 p}{0.02 p+3} \text { (Shown) } \\
\mathrm{f}^{\prime}(p) & =\frac{(0.02 p+3) 0.05-0.05 p(0.02)}{(0.02 p+3)^{2}} \\
& =\frac{0.15}{(0.02 p+3)^{2}}
\end{aligned}
$$

for $0 \leq p \leq 100,(0.02 p+3)^{2}>0$
$\therefore \mathrm{f}^{\prime}(p)=\frac{0.15}{(0.02 p+3)^{2}}>0$
$\therefore \mathrm{f}$ is an increasing function for $0 \leq p \leq 100$. (Proved)
The increasing function $\mathrm{f}(p)$ shows that as the company buys a greater percentage of its electric components from supplier A, the probability of a faulty component that is randomly packed from supplier A increases. This translates into a greater likelihood of receiving a greater number of faulty components from supplier A.

8. Topic: Permutations and Combinations

ELEVATED
$\mathrm{E}-3, \mathrm{~L}-1, \mathrm{~V}-1, \mathrm{~A}-1, \mathrm{~T}-1, \mathrm{D}-1$
(i) No. of ways to be arranged (without restrictions) $=\frac{8!}{3!}$
(ii) No. of ways for T and D next to each other $=\frac{7!}{3!} \times 2!=1680$ \therefore No. of ways of T and D must not be next to each other $=6720-1680$
(iii) No. of ways for consonants (L, V, T, D) and vowels must be alternate $=4!\times \frac{4!}{3!} \times 2$
$=192$

```
C}\quad\underline{V}\quad\underline{C}\quad\underline{V}\quad\underline{C}\quad\underline{V}\quad\underline{C
or }\underline{V}\quad\underline{C}\quad\underline{V}\quad\underline{C}\quad\underline{V}\quad\underline{C}\quad\underline{V
```

(iv) $\underline{C} \begin{array}{llllllllll}\text { Case } 1 & \underline{X} & \mathrm{E} & \underline{X} & \underline{X} & \mathrm{E} & \underline{\mathrm{X}} & \underline{\mathrm{X}} & \mathrm{E} & \underline{\mathrm{X}}\end{array}=5!\times 2!=240$ Case2 $\quad \mathrm{E} \quad \underline{\mathrm{X}} \quad \underline{\mathrm{X}} \quad \underline{\mathrm{X}} \quad \mathrm{E} \quad \underline{\mathrm{X}} \quad \underline{\mathrm{X}} \quad=5!\times 2!=240$

Note: \underline{X} denotes any letter that is not E .
\therefore No. of ways between any two Es must be at least 2 other letters
$=240+240$
$=480$

9. Topic: Normal Distributions

Let M be the random variable of the thickness in cm of a mechanics textbook.
(i)

$$
\begin{aligned}
& M \sim \mathrm{~N}\left(2.5,0.1^{2}\right) \quad \text { invHorm<0.9332,0 } \\
& \therefore \bar{M} \sim \mathrm{~N}\left(2.5, \frac{0.1^{2}}{n}\right) \\
& \text { Given } \mathrm{P}(\bar{M}>2.53)=0.0668 \\
& \text { Then } \mathrm{P}\left(Z>\frac{2.53-2.5}{\frac{0.1}{\sqrt{n}}}\right)=0.0668 \\
& 1-\mathrm{P}\left(Z<\frac{2.53-2.5}{\frac{0.1}{\sqrt{n}}}\right)=0.0668 \\
& \mathrm{P}(\mathrm{Z}<0.3 \sqrt{n})=0.9332 \\
& 0.3 \sqrt{n}=1.5 \\
& n \approx 25
\end{aligned}
$$

(ii) Let S be the random variable of the thickness in cm of a statistics textbook.

$$
\begin{aligned}
S & \sim \mathrm{~N}\left(2.0,0.08^{2}\right) \\
\text { Let } M_{T} & =M_{1}+M_{2}+M_{3}+\ldots+M_{21} \\
\therefore M_{T} & \sim \mathrm{~N}\left(21 \times 2.5,21 \times 0.1^{2}\right) \\
& =\mathrm{N}(52.5,0.21) \\
\text { Let } S_{T} & =S_{1}+S_{2}+S_{3}+\ldots+S_{24} \\
\therefore S_{\mathrm{T}} & \sim \mathrm{~N}\left(24 \times 2,24 \times 0.08^{2}\right) \\
& =\mathrm{N}(48.0,0.1536) \\
\Rightarrow M_{T}+S_{T} & \sim \mathrm{~N}(100.5,0.3636)
\end{aligned}
$$

$\mathrm{P}(21$ mechanic textbooks \& 24 statistics textbooks will fit into a bookshelf of length 1 m)
$=\mathrm{P}\left(M_{T}+S_{T} \leq 100 \mathrm{~cm}\right)$
$=0.20349$
≈ 0.203 ($\mathbf{3}$ sig. fig.)

$63) 10.5, \sqrt{6.36 .3}$

Casio fx-9860G

(iii) Let $D=S_{1}+S_{2}+S_{3}+S_{4}-3 M$

Then $\mathrm{E}(D)=4 \mathrm{E}(S)-3 \mathrm{E}(M)$
$=4(2)-3(25)$

$$
=0.5
$$

and $\operatorname{Var}(D)=4 \operatorname{Var}(S)+9 \operatorname{Var}(M)$

$$
=4(0.08)^{2}+9(0.01)^{2}
$$

$$
=0.1156
$$

$\therefore D \sim \mathrm{~N}(0.5,0.1156)$
P (The total thickness of 4 statistics textbooks <3 times the thickness of 1 mechanics textbook)
$=\mathrm{P}\left(S_{1}+S_{2}+S_{3}+S_{4}<3 M\right)$
$=\mathrm{P}\left(S_{1}+S_{2}+S_{3}+S_{4}-3 M<0\right)$
$=\mathrm{P}(D<0)$
$=0.07070$
≈ 0.0707 ($\mathbf{3}$ sig. fig.)

TI-84 Plus

Casio fx-9860G
(iv) The thickness of a mechanics textbook is independent of the thickness of a statistics textbook.
 For normal distributions, variables are
10. Topic: Hypothesis Testing assumed to be independent of each other.
(i) Unbiased estimate of the mean, $\bar{x}=\frac{\sum x}{n}$

$$
\begin{aligned}
& =\frac{86.4}{8} \\
& =9.6
\end{aligned}
$$

Unbiased estimate of the variance of $X=\frac{n}{n-1}\left[\frac{\sum x^{2}}{n}-(\bar{x})^{2}\right]$

$$
s^{2}=\frac{9}{8}\left[\frac{835.02}{9}-(9.6)^{2}\right]
$$

$=0.81$
(ii) Assumption: Mass of sugar follows a normal distribution.
$\mathrm{H}_{\mathrm{o}}: \mu=10$ grams
$\mathrm{H}_{1}: \mu \neq 10$ grams
Refer to table in MF15
$\mathrm{T}=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$ to find critical value for the t-distribution

$$
=\frac{9.6-10}{\sqrt{\frac{0.81}{9}}}
$$

$=-1.333$ where $\mu=10, s=\sqrt{0.81}$ and $n=9$

By G.C., p-value $=0.2191(>0.05)$
Hence we do not reject H_{0} and conclude that at the 5% level of significance, there is insufficient evidence to conclude that the mass of the packet is not 10 grams.
In this case, the sample size is small (say, <30). It's not large enough to assume a normal distribution according to central limit theorem.

TI-84 Plus

Casio fx-9860G
(iii) As the population variance of X is known, the z-test is carried out instead of the t-test. i.e. $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$
$\therefore \mathrm{z}=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$

11．Topic：Binomial，Poisson and Normal Distributions

（i）The assumptions needed for R to be well modeled by a binomial distribution： Given $R \sim \mathrm{~B}(n, p)$ ，
（a）The colour of the car is either red or not red．
（b）The trials are independent i．e．the colour of the car in each observation is independent of the colour of the car in every other observation．
（ii）Given also that $n=20, p=0.15$

$$
\mathrm{P}(4 \leq R<8)=\mathrm{P}(4 \leq R \leq 7)
$$

$$
=\mathrm{P}(R \leq 7)-\mathrm{P}(R \leq 3)
$$

$$
=0.99407-0.64772
$$

$$
\approx 0.346 \text { (} 3 \text { sig. fig.) }
$$

Casio fx－9860G
（iii）Given that $n=240, p=0.3$
Since $n=240(>50)$ is large，$n p=72>5$ and $n(1-p)=168>5$
the binomial distribution can be approximated using the normal distribution with mean $n p=72$ and variance $n p(1-p)=50.4$
$\therefore R \sim \mathrm{~N}(72,50.4)$ approximately．

TI－84 Plus
Casio fx－9860G
（iv）Given that $n=240$ and $p=0.02$
Since $n>50, p<0.1$ and $n p=4.8<5$ ，the binomial distribution can be approximated using the poisson districution with mean $\lambda=n p=4.8$
i．e．$R \sim \operatorname{Po}(4.8)$ approximately

$$
\mathrm{P}(R=3) \approx 0.1517 \text { (} \mathbf{4} \mathbf{~ d . p .})
$$

Foissonfdf（4．8，3

TI－84 Plus
（v）Given that $n=20$ and $\mathrm{P}(R=0$ or 1$)=0.2$

$$
\text { Then } \quad \mathrm{P}(R=0)+\mathrm{P}(R=1)=0.2 \quad{ }^{n} \mathrm{C}_{\text {} p} p^{\prime} q^{n}
$$

$(1-p)^{20}+\binom{20}{1} p^{1}(1-p)^{19}=0.2$
$(1-p){ }^{19}(1+19 p)=0.2$
Using G．C．，$\quad \boldsymbol{p}=\mathbf{0 . 1 4 2}$（ $\mathbf{3}$ sig．fig．）

TI－84 Plus

Casio fx－9860G

