MATHEMATICS（H1）

Paper 1 Suggested Solutions

1．Topic：Simultaneous Equations

$$
\begin{align*}
x+2 y & =3 \\
x & =3-2 y \tag{1}\\
x^{2}+x y & =2 \ldots \ldots \tag{2}
\end{align*}
$$

Sub（1）into（2），

$$
(3-2 y)^{2}+(3-2 y) y=2
$$

$$
9-12 y+4 y^{2}+3 y-2 y^{2}=2
$$

$$
2 y^{2}-9 y+7=0
$$

$$
(2 y-7)(y-1)=0
$$

$$
2 y-7=0 \quad \text { or } \quad y-1=0
$$

$$
y=3.5 \quad y=1
$$

Sub $y=3.5$ into（1），

$$
x=3-2(3.5)
$$

$$
=-4
$$

Sub $y=1$ into（1），
$x=3-2(1)$
$=1$
$\therefore x=-4, y=3.5$ and $x=1, y=1$

2．Topic：Graphs，Integration
（i）

$$
\begin{align*}
& y=\sqrt{x} \\
& y=\frac{1}{2} x
\end{align*}
$$

Equating（1）\＆（2）：

$$
\begin{aligned}
\sqrt{x} & =\frac{1}{2} x \\
x & =\frac{1}{4} x^{2} \\
x^{2} & =4 x \\
x^{2}-4 x & =0 \\
x(x-4) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use GC to check if pts of } \\
& \text { intersection are correct }
\end{aligned}
$$

\therefore Coordinates of intersection are $(0,0)$ and $(4,2)$
（ii）Area of the region between the two graphs $=\int_{0}^{4}\left(\sqrt{x}-\frac{1}{2} x\right) \mathrm{d} x$

$$
\begin{aligned}
\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c & =\int_{0}^{4}\left(x^{\frac{1}{2}}-\frac{1}{2} x\right) \mathrm{d} x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{2}}{4}\right]_{0}^{4} \\
& =\frac{4^{\frac{3}{2}}}{\frac{3}{2}}-\frac{4^{2}}{4} \\
& =5 \frac{1}{3}-4 \\
& =\mathbf{1} \frac{1}{3} \text { unit }^{2}
\end{aligned}
$$

3．Topic：Functions
（i） $\mathrm{f}(x)=\mathrm{e}^{x}$ Let $y=\mathrm{e}^{x}$ ，
$\ln y=x$

$$
\therefore \mathrm{f}^{-1}(x)=\ln x, x>0
$$

$$
\Rightarrow \quad \mathrm{h}(x)=\mathrm{f}^{-1} \mathrm{~g}(x)
$$

$=\mathrm{f}^{-1}(x+2)$
$=\ln (x+2), x>-2$
（ii）

When $x=0$
When $y=0, \ln (x+2)=0$

$$
x+2=\mathrm{e}^{0}
$$

$$
x=-1
$$

Equation of asymptote： $\boldsymbol{x}=\mathbf{- 2}$
Coordinates of points that cuts x－axis $=(\mathbf{1}, \mathbf{0})$
Coordinates of points that cuts y－axis $=(\mathbf{0}, \ln \mathbf{2})$
（iii） $\mathrm{g}(x)=x+2$

$$
g(-x)=-x+2
$$

Given $\mathrm{h}(x)=\mathrm{g}(-x)$ ：
$\Rightarrow \ln (x+2)=-x+2$
Using G．C．，draw $y=\ln (x+2)$ and $y=-x+2$

$$
\begin{aligned}
\therefore x & =0.9262 \\
& \approx \mathbf{0 . 9 2 6} \text { (} \mathbf{3} \mathbf{~ d . p .})
\end{aligned}
$$

Mathematics H1（8863／01）
 version 1.1

4．Topics：Differentiation，Differential Equations
（i）

$$
y=x-\frac{1}{x}
$$

When $y=0, x-\frac{1}{x}=0$

$$
x=\frac{1}{x}
$$

$$
x^{2}=1
$$

$\boldsymbol{x}=1$
or $\quad \boldsymbol{x}=-\mathbf{1}$
（ii）$\quad \begin{aligned} y & =x-\frac{1}{x} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =1+\frac{1}{x^{2}}\end{aligned}$
When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5}{4}$ and $y=\frac{3}{2}$
\therefore Gradient of the normal $=-1 \div \frac{5}{4}$
$=-\frac{4}{5}$
（iii）Equation of the normal at P ：

$$
\begin{aligned}
y-\frac{3}{2} & =-\frac{4}{5}(x-2) \\
y & =-\frac{4}{5} x+\frac{31}{10} \\
5 y & =-4 x+15.5
\end{aligned}
$$

$$
\begin{equation*}
5 y+4 x-15.5=0 \tag{1}
\end{equation*}
$$

（iv）

Mathematics H1 (8863/01) vesion ..1

```
Sub \(x=0\) into ( 1 ),
    \(5 y=15.5\)
    \(y=\frac{31}{10}\)
```

\therefore Coordinates of $N=\left(0, \frac{31}{10}\right)$
Equation of tangent at P :

$$
\begin{align*}
y-\frac{3}{2} & =\frac{5}{4}(x-2) \\
y & =\frac{5}{4} x-1 . \tag{2}
\end{align*}
$$

Sub $x=0$ into (2), $y=-1$
\therefore Coordinates of $T=(0,-1)$
Area of $\triangle P T N=\frac{1}{2} \times l \times T N$
$=\frac{1}{2} \times 2 \times\left(\frac{31}{10}+1\right)$
$=4.1$ unit 2
5. Topic: Differentiation

$$
\begin{equation*}
y=2 x^{3}-5 x^{2}-4 x+3 . \tag{1}
\end{equation*}
$$

(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-10 x-4$

For stationary points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$6 x^{2}-10 x-4=0$
$3 x^{2}-5 x-2=0$
$(3 x+1)(x-2)=0$
$3 x+1=0 \quad$ or $\quad x-2=0$

$$
x=-\frac{1}{3} \quad x=2
$$

Sub $x=-\frac{1}{3}$ into (1),

$$
y=2\left(-\frac{1}{3}\right)^{3}-5\left(-\frac{1}{3}\right)^{2}-4\left(-\frac{1}{3}\right)+3
$$

$$
=3 \frac{19}{27}
$$

Sub $x=2$ into (1),

$$
y=2(2)^{3}-5(2)^{2}-4(2)+3
$$

$$
=-9
$$

\therefore Coordinates of the stationary points on the curve are $\left(-\frac{1}{3}, 3 \frac{19}{27}\right)$ and $(2,-9)$
（ii）

$y=2 x^{3}-5 x^{2}-4 x+3$
$=(x+1)\left(2 x^{2}-7 x+3\right)$

$$
=(x+1)(2 x-1)(x-3)
$$

When $y=0, \boldsymbol{x}=-\mathbf{1}, \frac{\mathbf{1}}{\mathbf{2}}, \mathbf{3}$
（iii） $2 x^{3}-5 x^{2}-4 x+3>0$
From the graph in（ii），$-1<x<\frac{1}{2}, x>3$

$$
2 \mathrm{e}^{3 x}-5 \mathrm{e}^{2 x}-4 \mathrm{e}^{x}+3>0
$$

$$
2\left(\mathrm{e}^{x}\right)^{3}-5\left(\mathrm{e}^{x}\right)^{2}-4\left(\mathrm{e}^{x}\right)+3>0
$$

$$
\Rightarrow-1<\mathrm{e}^{x}<\frac{1}{2} \quad \mathrm{e}^{x}>3
$$

$$
\Rightarrow \quad 0<\mathrm{e}^{x}<\frac{1}{2}\left(\mathrm{e}^{x} \text { is always positive }\right) \quad \therefore \boldsymbol{x}>\ln 3
$$

$$
\therefore x<\ln \frac{1}{2}
$$

6．Topic：Probability
（i） $\mathrm{P}($ the call is for A and A is in the office $)=0.2 \times 0.7$

$$
=0.14
$$

（ii） P （the researcher being called is in the office）
$=\mathrm{P}(A$ is in office or B is in office or C is in office $)$

$$
=0.2(0.7)+0.3(0.6)+0.5(0.8)
$$

$$
=0.72
$$

＊Note that this is a conditional probability question．
（iii）Let x ：call for C
y ：the researcher being called is not in the office

$$
\therefore \mathrm{P}(x \mid y)=\frac{\mathrm{P}(x \cap y)}{\mathrm{P}(y)}
$$

$=\frac{0.5(0.2)}{1-\mathrm{P}\left(y^{\prime}\right)}$
$=\frac{0.5(0.2)}{1-0.72} \quad$ From（ii）
≈ 0.3571
≈ 0.357（ 3 sig．fig．）

7．Topic：Probability
（i） $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

$$
\begin{aligned}
\frac{17}{30} & =\frac{1}{3}+\frac{2}{5}-\mathrm{P}(A \cap B) \\
\mathbf{P}(\boldsymbol{A} \cap \boldsymbol{B}) & =\frac{\mathbf{1}}{6}
\end{aligned}
$$

（ii）If A and B are not independent $\Rightarrow \mathrm{P}(A) \cdot \mathrm{P}(B)=\mathrm{P}(A \cap B)$

$$
\begin{aligned}
\text { L.H.S.: } \mathrm{P}(A) \cdot \mathrm{P}(B) & =\frac{1}{3} \times \frac{2}{5} \\
& =\frac{2}{15} \\
\text { R.H.S.: } \mathrm{P}(A \cap B) & =\frac{1}{6} \\
\mathrm{P}(A) \cdot \mathrm{P}(B) & \neq \mathrm{P}(A \cap B)
\end{aligned}
$$

$\therefore A$ and B are not independent．（Shown）
（iii）

$\mathrm{P}\left(A^{\prime} \cup B\right)=1-\mathrm{P}(A)+\mathrm{P}(A \cap B)$ From（i）

$$
=1-\frac{1}{3}+\frac{1}{6}
$$

$$
=\frac{5}{6}
$$

8．Topic：Normal Distribution，Hypothesis Testing

Let the random variable X be the lifetime of a component． $X \sim \mathrm{~N}\left(120,18^{2}\right)$
（i） $\mathrm{P}(x>144)=0.091211$
≈ 0.0912（ 3 sig．fig．）

TI－84 Plus

Casio fx－9860G
（ii） $\mathrm{P}\left(X_{1}>144\right.$ and $\left.X_{2}<144\right)+\mathrm{P}\left(X_{1}<144\right.$ and $\left.X_{2}>144\right)$ $=0.091211(1-0.091211)+(1-0.091211)(0.091211)$
$=0.16578$
≈ 0.166（ $\mathbf{3}$ sig．fig．）
$\mathrm{H}_{\mathrm{o}}: \mu=120$ days
$\mathrm{H}_{1}: \mu>120$ days
$\bar{X} \sim \mathrm{~N}\left(120, \frac{18^{2}}{50}\right)$
$\mathrm{P}\left(1^{\text {st }}\right.$ comp lifetime >144 AND $2^{\text {nd }}$ component lifetime <144 ）OR $\mathrm{P}\left(1^{\text {st }}\right.$ component lifetime <144 AND $2^{\text {nd }}$ component lifetime＞144）
variance by population size
Since σ is known and n is large（ ≥ 50 ），a z－test is used．
Using G．C．，$z_{\text {test }}=1.5713$

$$
\begin{aligned}
\mathrm{z}_{\text {test }} & =\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \\
& =\frac{124-120}{\frac{18}{\sqrt{50}}} \\
& =1.571\left(<\mathrm{z}_{\text {critical }}\right)
\end{aligned}
$$

Since $z_{\text {test }}<z_{\text {critical }}$ ，do not reject H_{o} ．
There is insufficient evidence，at the 5% level of significance，to support the company＇s claim that the mean lifetime is longer than for the old components．

ALTERNATE APPROACH

$\mathrm{H}_{\mathrm{o}}: \mu=120$ days
$\mathrm{H}_{1}: \mu>120$ days
$\bar{X} \sim \mathrm{~N}\left(120, \frac{18^{2}}{50}\right)$
Since σ is known and n is large (≥ 50), a z - test is used.
Using G.C., p-value $=0.05805$
Since p-value >0.05, do not reject H_{0}
There is insufficient evidence, at the 5% level of significance, to support the company's claim that the mean lifetime is longer than for the old components.

Casio fx-9860G
9. Topic: Correlation Coefficient and Linear Regression
(i)

(ii)
TI-84 Plus
Casio fx-9860G

Product moment coefficient, $\boldsymbol{r}=\mathbf{0 . 9 3 1}$
The r value of 0.931 indicates a reasonably strong positive linear correlation between the volume of the liquid nutrient added and the total weight of fruits per tree.
（iii）From G．C．：$y=15.486+0.01232 x$

$$
\approx 15.5+0.0123 x
$$

（iv）When $x=135, y=15.5+0.0123(135)$

$$
=17.1605
$$

$$
\approx 17.2 \mathrm{~kg}
$$

（v）Since the volume of liquid nutrient needed for $20 \mathbf{~ k g}$ of fruit is estimated through extrapolating the data beyond 18.1 kg ，it might be unsuitable to use the equation．

10．Topic：Binomial and Normal Distributions
（i）Let the random variable X be the number of candidates who fail the piano exam．

$$
\quad X \sim \mathrm{~B}(10,0.2)
$$

$\therefore \mathrm{P}(X=2)=\mathbf{0 . 3 0 2}$

TI－84 Plus
Casio fx－9860G
（ii）Probability of candidates who pass the piano examination and awarded a distinction
$=0.15(1-0.2)$
$=0.12$
Let the random variable Y be the number of candidates who pass the piano examination and awarded a distinction．

$$
Y \sim \mathrm{~B}(10,0.12)
$$

$$
\begin{aligned}
\mathrm{P}(Y<2) & =\mathrm{P}(Y \leq 1) \\
& =0.65827 \\
& \approx \mathbf{0 . 6 5 8} \mathbf{(3} \mathbf{~ s i g} . \text { fig.) }
\end{aligned}
$$

（iii）Let the random variable W be the number of candidates who fail the piano examination．

$$
W \sim \mathrm{~B}(50,0.2)
$$

Since $n p=10(>5)$ and $n q=40(>5)$ ，
We can approximate $W \sim \mathrm{~N}(10,8)$ using normal distribution

TI－84 Plus

Casio fx－9860G

11．Topic：Sampling and Hypothesis Testing

（a）（i）A systematic random sample of 8 may be obtained by first arranging the claims in order of the time in which they are received and then selecting every $9^{\text {th }}$ claim from the stack，from a random starting point in the stack．
（ii）Choosing the first of claims received would not give a good indication as the claims that arrive the earliest will tend to be of relatively low－ value，since less time is needed to access the claim amounts when less items have been damaged by the flood．Hence a systematic random sample will give a better indication of the value of the 72 claims．
（b）（i）Unbiased estimate of population mean：
$\bar{x}=\frac{\sum x}{n}$

$$
\begin{aligned}
& =\frac{\sum(x-1000)}{n}+1000 \\
& =\frac{5320}{120}+1000 \\
& =\mathbf{1 0 4 4} \frac{\mathbf{1}}{3}
\end{aligned}
$$

Unbiased estimate of population variance：

$$
\begin{aligned}
S^{2} & =\frac{n}{n-1}\left\{\frac{\Sigma(x-1000)^{2}}{n}-\left[\frac{\sum(x-1000)}{n}\right]^{2}\right\} \\
& =\frac{120}{119}\left\{\frac{8282000}{120}-\left(\frac{5320}{120}\right)^{2}\right\} \\
& \approx 67614.67 \\
& \approx 67600(3 \text { sig. fig. })
\end{aligned}
$$

（ii）An unbiased estimate is an estimate for a parameter of a distribution whose expected value is equal to the true value of the parameter being estimated．

$$
\text { (iii) } \mathrm{H}_{0}: \mu=1000
$$

$\mathrm{H}_{1}: \mu \neq 1000$

$$
\bar{X} \sim \mathrm{~N}\left(1000, \frac{67614.67}{120}\right)
$$

$$
\mathrm{z}=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}
$$

$=\frac{1044 \frac{1}{3}-1000}{\sqrt{\frac{67614.67}{120}}}$
≈ 1.86753

From G．C．，$\alpha \%=2 \times 0.03091$

$$
=0.06182 \times 100 \%
$$

$\approx 6.18 \%$
$\therefore \alpha=6.18$
normalgaf（1．8675
3，E99， 0.13137419

TI－84 Plus

Casio fx－9860G
Set of values of $\alpha:|\boldsymbol{\alpha}| \geq \mathbf{6 . 1 8}$
version 1.1

12．Topic：Normal Distribution
（a）Let $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

$$
Z=\frac{x-\mu}{\sigma} \sim \mathrm{N}(0,1)
$$

Using G．C．，
$\Rightarrow \frac{22-\mu}{\sigma}=-0.52440$ \qquad
$\Rightarrow \frac{29-\mu}{\sigma}=0.84162$ \qquad
$\frac{22-\mu}{\sigma}$ ：

TI－84 Plus

 | Inverse |
| ---: | :--- |
| $x=-0.524491$ |

Casio fx－9860G
$\frac{29-\mu}{\sigma}$ ：
inuHorm（0．8，6，1）

TI－84 Plus
Casio fx－9860G
（2）－（1），
$\frac{7}{\sigma}=0.84162+0.52440$
$\sigma=5.1243$
≈ 5.12（ 3 sig．fig．）

Sub $\sigma=5.1243$ into（1），
$22-\mu=-0.52440(5.1243)$

$$
\begin{aligned}
\mu & \approx 24.687 \\
& \approx 24.7 \text { (3 sig. fig.) }
\end{aligned}
$$

$\therefore \sigma=5.12$ and $\boldsymbol{\mu}=\mathbf{2 4 . 7}$
（b）（i）Let the random variable X be the mass of Apple and the random variable Y be the mass of Nectarines．

Casio fx－9860G

Mathematics H1 (8863/01) verion 1.

(ii) Let $C=9\left(X_{1}+X_{2}\right)+12\left(Y_{1}+Y_{2}+Y_{3}+Y_{4}\right)$
$C \sim \mathrm{~N}\left[9(0.15 \times 2)+12(0.07 \times 4), 9^{2}(2)(0.03)^{2}+12^{2}(4)(0.02)\right]$
~ N(6.06, 0.3762)
$\mathrm{P}(5<C<6)=0.41906$
≈ 0.419 ($\mathbf{3}$ sig. fig.)
normaledf $5,5,6$.

TI-84 Plus
Casio fx-9860G

