Mathematics H2 (9740/02)
version 1.1

MATHEMATICS (H2)

9740/02
Paper 2 Suggested Solutions October/November 2008

1. Topic : Functions and Graphs
(i)

(ii) $\mathrm{f}(x)=\mathrm{e}^{x} \sin x$

$$
\begin{array}{ll}
=\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots\right)\left(x-\frac{x^{3}}{6}+\ldots\right) \\
=x-\frac{x^{3}}{6}+x^{2}+\frac{x^{3}}{2}+\ldots & \\
=x+x^{2}+\frac{x^{3}}{3}+\ldots & \\
x^{3} & \text { Refer to formula list under } \\
\text { Maclaurin's expansion }
\end{array}
$$

(iv)
$|\mathrm{f}(x)-\mathrm{g}(x)|<0.5$
$\left|\mathrm{e}^{x} \sin x-\left(x+x^{2}+\frac{x^{3}}{3}\right)\right|<0.5$
$-0.5<\mathrm{e}^{x} \sin x-\left(x+x^{2}+\frac{x^{3}}{3}\right)<0.5$
$\mathrm{e}^{x} \sin x-\left(x+x^{2}+\frac{x^{3}}{3}\right)+0.5>0 \quad$ or $\quad \mathrm{e}^{x} \sin x-\left(x+x^{2}+\frac{x^{3}}{3}\right)-0.5<0$
$x<1.56$
$x>-1.96$

Casio fx-9860G

$\therefore-1.96 \leq x \leq 1.56$

Ensure calculator's
to part (i)
(iii)

TI-84 Plus mode is in Radians.

2．Topic：Definite Integrals
（i）$y^{2}=x(1-x)^{\frac{1}{2}}$

$$
\begin{aligned}
& y=x^{\frac{1}{2}}(1-x)^{\frac{1}{4}} \\
& \text { Area of } R=\mathbf{2} \int_{0}^{1} x^{\frac{1}{2}}(\mathbf{1}-\boldsymbol{x})^{\frac{1}{4}} \mathbf{d} \boldsymbol{x} \\
&=2(0.49944) \\
&=0.9988 \\
& \approx \mathbf{0 . 9 9 9}(\mathbf{3} \text { sig. fig.) } \\
& \text { Let } \quad \begin{aligned}
u & =1-x \\
& \therefore \mathrm{~d} u
\end{aligned}=-\mathrm{d} x
\end{aligned}
$$

（ii）Let

$\rangle \quad .4994403553$

TI－84 Plus

सदाहा EC \square
Casio fx－9860G

To find max point，let $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

$$
\begin{aligned}
\left(\frac{1}{4}\right) \frac{2-3 x}{y \sqrt{1-x}} & =0 \\
2-3 x & =0 \\
\therefore \boldsymbol{x} & =\frac{2}{3}
\end{aligned}
$$

3．Topic ：Complex numbers（polar form）
（a）$w=r \mathrm{e}^{\mathrm{i} \theta}$
$w^{*}=r \mathrm{e}^{i(-\theta)}$
$p=\frac{w}{w^{*}}$
$=\frac{r \mathrm{e}^{\mathrm{i} \theta}}{r \mathrm{e}^{\mathrm{i}(-\theta)}}$
$p=\mathrm{e}^{\mathrm{i} 2 \theta}$
$|p|=1, \arg (p)=2 \theta$

$$
\begin{aligned}
p^{5} & =\left(\mathrm{e}^{\mathrm{i} 2 \theta}\right)^{5} \\
& =\mathrm{e}^{\mathrm{i} 10 \theta}
\end{aligned}
$$

$=\cos 10 \theta+\mathrm{i} \sin 10 \theta$
Given that p^{5} is positive and real，

$$
p^{5}=\cos 10 \theta+\mathrm{i}(0)
$$

$\Rightarrow \sin 10 \theta=0$
Basic $\angle=0$
$10 \theta=2 \pi, 4 \pi$

$$
\therefore \theta=\frac{2 \pi}{10}, \frac{4 \pi}{10}
$$

$=\frac{\pi}{5}, \frac{2 \pi}{5}$
Given that $0<\theta<\frac{\pi}{2}$ ，
$0<10 \theta<5 \pi$

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x\left(\frac{1}{2}\right)(1-x)^{-\frac{1}{2}}(-1)+\sqrt{1-x}
$$

When $x=0, \quad u=1$
When $x=1, \quad u=0$
Volume $=\pi \int_{0}^{1} y^{2} \mathrm{~d} x$
（iii）$\quad y^{2}=x \sqrt{1-x}$
$=\pi \int_{0}^{1} x \sqrt{1-x} \mathrm{~d} x$
$\int_{a}^{b} f(x) d x$
$=-\int_{b}^{a} f(x) d x$
－

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}(1-x)^{-\frac{1}{2}}[-x+2(1-x)]
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1}{4}\right) \frac{2-3 x}{y \sqrt{1-x}}
$$

GCE＇A＇Level October／November 2008 Suggested Solutions

Mathematics H2（9740／02）
 version 1.1

（b）（i）

（ii）$\quad \cos \angle A O B=\frac{5}{6}$

$$
\angle A O B=\cos ^{-1}\left(\frac{5}{6}\right)
$$

$$
=0.58569
$$

$\sin \angle B O D=\frac{3}{5}$
$\angle B O D=\sin ^{-1}\left(\frac{3}{5}\right)$

$$
=0.64350
$$

$$
\angle C O B=\angle A O B
$$ at $\angle A O D=\alpha$

$$
=0.58569
$$

\therefore least possible value of $\arg z=\alpha$

$$
\begin{aligned}
& =\angle B O D-\angle A O B \\
& =0.64350-0.58569
\end{aligned}
$$

$=0.05781$
$\approx 0.058 \mathrm{rad}(3 \mathrm{~d} . \mathrm{p}$.
\therefore greatest possible value of $\arg z=\beta$

Greatest arg z occurs at

 $\angle C O D=\beta$$=\angle C O B+\angle A O B+\alpha$
$=0.58569+0.58569+0.05781$
$=1.2292$
$\approx 1.229 \mathrm{rad}(\mathbf{3 ~ d . p .})$
4．Topic：Functions and inverse functions
（i）

Graph of f^{1} is a reflection of graph of f in the line $y=x$ ．
(ii) Let

$$
\begin{aligned}
y & =(x-4)^{2}+1 \\
(x-4)^{2} & =y-1 \\
x-4 & = \pm \sqrt{y-1} \\
x & = \pm \sqrt{y-1}+4 \\
\therefore \mathbf{f}^{-1}(\boldsymbol{x}) & =\mathbf{4}+\sqrt{\boldsymbol{x}-\mathbf{1}}, \boldsymbol{x}>\mathbf{1} \\
\mathbf{D}_{\mathbf{f}^{-1}} & =(\mathbf{1}, \infty) \quad \mathrm{D}_{\mathrm{f}^{-1}}=\mathrm{R}_{\mathrm{f}}
\end{aligned}
$$

(iv) Equation of the line $\Rightarrow \boldsymbol{y}=\boldsymbol{x}$

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =\mathrm{f}^{-1}(x)=x & & \begin{array}{l}
\text { Common point of } \\
\text { intersection of the } 3 \text { graphs }
\end{array} \\
(x-4)^{2}+1 & =x & \\
x^{2}-8 x+16+1-x & =0 & \\
x^{2}-9 x+17 & =0 & \\
x & =\frac{9 \pm \sqrt{(-9)^{2}-4(1)(17)}}{2} \\
& =\frac{9 \pm \sqrt{81-68}}{2} \\
& =\frac{9 \pm \sqrt{13}}{2} \\
& =\frac{9+\sqrt{13}}{2} \text { or } \frac{9-\sqrt{13}}{2}(\text { rej. })
\end{array}
$$

$$
\therefore x=\frac{9+\sqrt{13}}{2}
$$

5. Topic : Sampling

Call an assembly of the 950 pupils.
Start from a randomly selected student and pick every $\frac{950}{50}=19^{\text {th }}$ student.
As the different pupils belong to different groups and organizations that will use different sports facilities for different activities, a stratified sample put together from random samples taken from each group will provide a more accurate representation of the pupil population without any possible bias towards any groups.
6. Topic: Hypothesis Testing

$$
\begin{aligned}
\bar{x} & =\frac{\sum x}{n} \\
& =\frac{1026}{15} \\
& =68.4 \\
S^{2} & =\frac{1}{n-1}\left[\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right] \\
& =\frac{1}{14}\left[77265.90-\frac{1026^{2}}{15}\right] \\
& =506.25=(22.5)^{2} \\
\bar{X} & \sim \mathrm{~N}\left(78, \frac{s^{2}}{n}\right) \\
\bar{X} & \sim \mathrm{~N}\left(78, \frac{506.25}{15}\right) \\
\mathrm{H}_{0}: \mu & =78 \\
\mathrm{H}_{1}: \mu & \neq 78
\end{aligned}
$$

From G.C,

$$
t=-1.6524
$$

$$
p=0.121
$$

Since $p=0.121 \geq 0.05$, we do not reject H_{0}. We conclude that at the 5% level, there is insufficient of evidence to suggest that the mean mass of calcium in a bottle has changed.

T-Testinata stata	T-Test.
InftiLata Stats	$\mu \neq 78$
씆:68.4	$\begin{aligned} & t=-12652472894 \\ & \mathrm{~F}=.126679869 \end{aligned}$
5×122.5	$\overline{\mathrm{x}}=68.4$
7:15	$5 \times=22.5$
	$\mathrm{r}=15$

TI-84 Plus

Casio fx－9860G
7．Topic ：Probability

（i） $\mathrm{P}(A$ wins in the second set $)=0.6(0.7)+0.4(0.2)$

$$
=0.5
$$

（ii） $\mathrm{P}(A$ wins the match $)=0.6(0.7)+0.4(0.2)(0.7)+0.6(0.3)(0.2)$

$$
\begin{aligned}
& =0.42+0.056+0.036 \\
& =\mathbf{0 . 5 1 2}
\end{aligned}
$$

＊Note that this is a conditional probability question．
（iii） $\mathrm{P}(B$ won the first set $\mid A$ won the match $)$

8．Topic ：Correlation coefficient and linear regression
（i）From G．C， $\boldsymbol{r}=\mathbf{0 . 9 7 0}$（ $\mathbf{3}$ sig．fig．）
Since r is close to 1 ，this indicates that there is a strong positive linear correlation between x and t ．

Casio fx－9860G
（ii）

（iii）As the remaining points＇scattering pattern appears to follow that of a logarithmic data set，the scatter diagram may be modeled by a straight line $t=a+b \ln x$ ．
（iv）Using G．C，
$t=1.42+4.40 \ln x$
$\therefore a=1.42, b=4.40$

－

TI－84 Plus

Casio fx－9860G
（v）$t=1.42+4.40 \ln x$
When $x=4.8$ ，
$t=1.42+4.40 \ln 4.8$

$$
=8.32 \text { (} 3 \text { sig. fig.) }
$$

（vi）Since $\boldsymbol{x}=\mathbf{8}$ is out of the given data set＇s range，the value of \boldsymbol{t} obtained may not be accurate．
9．Topic ：Poisson Distribution
Let r．v．$X=$ number of grand pianos sold in a week

$$
X \sim \operatorname{Po}(1.8)
$$

$\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$
$=1-0.89129$
$=0.1087$
≈ 0.109（ $\mathbf{3}$ sig．fig．）

TI－84 Plus

Casio fx－9860G
Let r．v．$Y=$ number of upright pianos sold in a week，$Y \sim \operatorname{Po}(2.6)$

$X+Y$	$=$ total number of pianos sold in a week
$X+Y$	$\sim \operatorname{Po}(1.8+2.6)$
	$\sim \operatorname{Po}(4.4)$
$\mathrm{P}(X+Y=4)$	$=0.1917$
	$\approx \mathbf{0 . 1 9 2}$（3 sig．fig．）

Casio fx－9860G
Mean number of pianos sold in a year $=50 \times 1.8$

$$
=90
$$

Let $A=$ number of grand pianos sold in a year．

$$
A \sim \operatorname{Po}(90)
$$

Use continuity correction to approximate a discrete distribution（i．e Poisson） by a continuous
Since mean $>10, A \sim \mathrm{~N}(90,90)$ approximately distribution（i．e normal）．
$\mathrm{P}(A<80)=\mathrm{P}(A<79.5)$［Continuity Correction］
$=0.1341$
≈ 0.134（ $\mathbf{3}$ sig．fig．）

TI－84 Plus

Casio fx－9860G

The sales of the pianos are likely to follow demand trends across the different months of the year．Hence a piano sale should not be considered random event within the interval of a year．

10. Topic: Combinations

(iv) ${ }^{12} \mathrm{C}_{8}-{ }^{9} \mathrm{C}_{8}-{ }^{8} \mathrm{C}_{8}-0=495-9-1-0$
$=485 \quad{ }^{12} \mathrm{C}_{8}$: total no. of ways with no restriction
11. Topic : Normal distributions $\quad{ }^{9} \mathrm{C}_{8}$: group without K
(i) $X_{1}+X_{2} \sim \mathrm{~N}\left(50 \times 2,8^{2} \times 2\right) \quad 0$: group without M (impossible as $K+L=7$)
$\sim \mathrm{N}(100,128)$ \qquad

$$
\begin{aligned}
\mathrm{P}\left(X_{1}+X_{2}>120\right) & =0.03854 \\
& \approx \mathbf{0 . 0 3 8 5}(\mathbf{3} \text { sig. fig.) }
\end{aligned}
$$

$$
X_{1}=X_{2} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

$$
\mathrm{E}\left(X_{1}+X_{2}\right)=\mu+\mu=2 \mu
$$

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\sigma^{2}+\sigma^{2}=2 \sigma^{2}
$$

$$
\begin{aligned}
& \text { nor } \\
& 9,1016 d f(120, ~ E 9
\end{aligned}
$$

TI-84 Plus

Casio fx-9860G
(ii)

$$
\begin{aligned}
X_{1}-X_{2} & \sim \mathrm{~N}(0,128) & & \mathrm{E}\left(X_{1}-X_{2}\right)=\mu-\mu=0 \\
\mathrm{P}\left(X_{1}>X_{2}+15\right) & =\mathrm{P}\left(X_{1}-X_{2}>15\right) & & \operatorname{Var}\left(X_{1}-X_{2}\right)=\sigma^{2}+\sigma^{2}=2 \sigma^{2} \\
& =\mathbf{0 . 0 9 2 4} \mathbf{(3} \text { sig. fig. }) & &
\end{aligned}
$$

TI-84 Plus
Consider, $\quad Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
\mathrm{P}(Y<74) & =0.0668 \\
\mathrm{P}\left(Z<\frac{74-\mu}{\sigma}\right) & =0.0668 \\
\Rightarrow \frac{74-\mu}{\sigma} & =-1.5
\end{aligned}
$$

$$
\text { nu Horm }<0.0668,0]
$$

TI-84 Plus

Casio fx-9860G
$\mathrm{P}(Y>146)=0.0668$

$$
\mathrm{P}(Y<146)=1-0.0668
$$

$$
=0.9332
$$

$$
\mathrm{P}\left(Z<\frac{146-\mu}{\sigma}\right)=0.9332
$$

$$
\begin{equation*}
\Rightarrow \frac{146-\mu}{\sigma}=1.5 \tag{2}
\end{equation*}
$$

TI-84 Plus

Inverse
$x=1.5006556$
(1) - (2),

$$
\begin{align*}
& -\frac{72}{\sigma}=-3 \\
& \sigma=24 \\
& \operatorname{sub} \sigma=24 \text { into (1), } \\
& 74-\mu=-1.5(24) \\
& \mu=110 \\
& \therefore \mu=110, \sigma=24 \\
& \therefore \mathrm{E}(Y)=110 \\
& \operatorname{Var}(Y)=24^{2} \\
& =576 \\
& \mathrm{E}(a X+b)=110 \\
& a \mathrm{E}(X)+b=110 \\
& 50 a+b=110 \\
& b=110-50 a \tag{3}\\
& \operatorname{Var}(a X+b)=24^{2} \\
& \mathrm{a}^{2} \operatorname{Var}(X)=576 \\
& a^{2}(64)=576 \\
& a^{2}=9 \\
& a=3 \text { or }-3 \text { (reject) }
\end{align*}
$$

From qn，
$\mathrm{E}(X)=50$
$\operatorname{sub} a=3$ into（3），

$$
\begin{aligned}
b & =110-50(3) \\
& =-40
\end{aligned}
$$

$$
\therefore a=3, b=-40
$$

